

Lecture 25: Mixture of Experts & Efficiency

Scaling Efficiently with Sparse Models

PSYC 51.07: Models of Language and Communication

Week 9

Today's Journey

What we'll cover

- 1. The Scaling Problem:** Why bigger isn't always better
- 2. Mixture of Experts:** Sparse activation for efficiency
- 3. How MoE Works:** Routing, load balancing, training
- 4. Real-World MoE:** Mixtral and production systems
- 5. Other Efficiency Techniques:** Quantization, pruning, distillation

The Scaling Dilemma

Larger models perform better... but at what cost?

Training a 175B parameter model (GPT-3 scale):

- 💰 Cost: \$4-12 million in compute
- 🔥 Energy: Equivalent to 120 homes for a year
- ⏳ Time: Weeks to months on thousands of GPUs
- 🐌 Inference: Slow and expensive (\$0.002-0.02 per 1K tokens)
- 🌎 Environmental: Massive carbon footprint

The Challenge

Can we get the benefits of scale without the full computational cost?

Key Insight: Not all parameters need to be active for every input!

Dense vs Sparse Models

Dense Models (e.g., GPT-3):

- 175B parameters, 175B active
- High compute per token
- Simple architecture

What is Mixture of Experts?

Mixture of Experts (MoE)

A neural network architecture where different "expert" sub-networks specialize in different parts of the input space, with a gating mechanism that routes inputs to the appropriate experts.

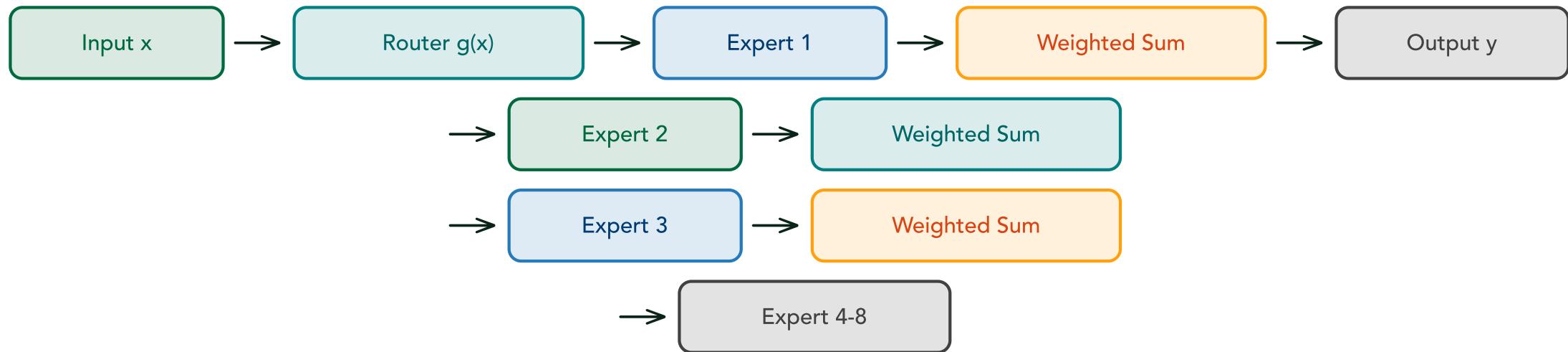
Key Components:

- 1. Experts:** Multiple specialized feed-forward networks
- 2. Router/Gate:** Learned function that assigns inputs to experts
- 3. Sparse Activation:** Only top- k experts process each input

Intuition:

- Different experts become good at different things
- Math expert, code expert, language expert, etc.

MoE Architecture



Concrete Example: Processing "def factorial(n):"

```
1# Router computes scores for each expert
2router_logits = router(token_embedding) # Shape: (8,) for 8 experts
3# [0.1, 0.9, 0.3, 0.2, 0.1, 0.1, 0.1, 0.1] # Expert 2 (Code) scores highest!
4
5# Select top-2 experts
6top_k_indices = [1, 2] # Expert 2 (Code) and Expert 3 (Language)
```

The Router Mechanism

Step-by-step routing for a single token:

```
1import torch.nn.functional as F
2
3def route_token(x, router_weights, numExperts=8, k=2):
4    """Route a token to top-k experts"""
5    # Step 1: Compute routing scores (linear projection)
6    # router_weights: (hidden_dim, numExperts)
7    logits = x @ router_weights # Shape: (numExperts,)
8    # Example: [-0.5, 2.1, 1.3, 0.2, -0.1, 0.0, -0.3, 0.1]
9
10   # Step 2: Convert to probabilities
11   probs = F.softmax(logits, dim=-1)
12   # Example: [0.04, 0.52, 0.24, 0.08, 0.03, 0.03, 0.03, 0.03]
13
14   # Step 3: Select top-k experts
15   top_k_probs, top_k_indices = torch.topk(probs, k)
16   # indices: [1, 2], probs: [0.52, 0.24]
```

The Router Mechanism

```
21
22     return top_k_indices, top_k_probs
23     # Expert 1 handles 68%, Expert 2 handles 32%
```

...continued

MoE in PyTorch (Simplified)


```
1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4
5class MoELayer(nn.Module):
6    def __init__(self, d_model, numExperts, expertCapacity, k=2):
7        super().__init__()
8        self.numExperts = numExperts
9        self.k = k # Top-k routing
10
11        # Router
12        self.gate = nn.Linear(d_model, numExperts)
13
14        # Experts (simple FFN for each)
15        self.experts = nn.ModuleList([
16            nn.Sequential(
17                nn.Linear(d_model, 4 * d_model),
18                nn.ReLU(),
```

MoE in PyTorch (Simplified)


```
21         for _ in range(num_experts)
22     ])
23
24     def forward(self, x):
25         # x: (batch_size, seq_len, d_model)
26         batch_size, seq_len, d_model = x.shape
27
28         # Compute routing scores
29         router_logits = self.gate(x) # (batch, seq, num_experts)
30         router_probs = F.softmax(router_logits, dim=-1)
31
32         # Select top-k experts
33         top_k_probs, top_k_indices = torch.topk(router_probs, self.k, dim=-1)
34         # top_k_probs: (batch, seq, k)
35         # top_k_indices: (batch, seq, k)
```

MoE Forward Pass (cont.)


```
1# Initialize output
2    output = torch.zeros_like(x)
3
4    # Route to experts
5    for i in range(self.k):
6        # Get expert indices for this position
7        expert_idx = top_k_indices[:, :, i] # (batch, seq)
8        expert_weight = top_k_probs[:, :, i] # (batch, seq)
9
10       # Process through each expert
11       for expert_id in range(self.num_experts):
12           # Mask for tokens routed to this expert
13           mask = (expert_idx == expert_id)
14
15           if mask.any():
16               # Get tokens for this expert
17               expert_input = x[mask]
18
```

MoE Forward Pass (cont.)


```
21
22      # Add weighted output
23      output[mask] += expert_weight[mask].unsqueeze(-1) * expert
24
25      return output
```

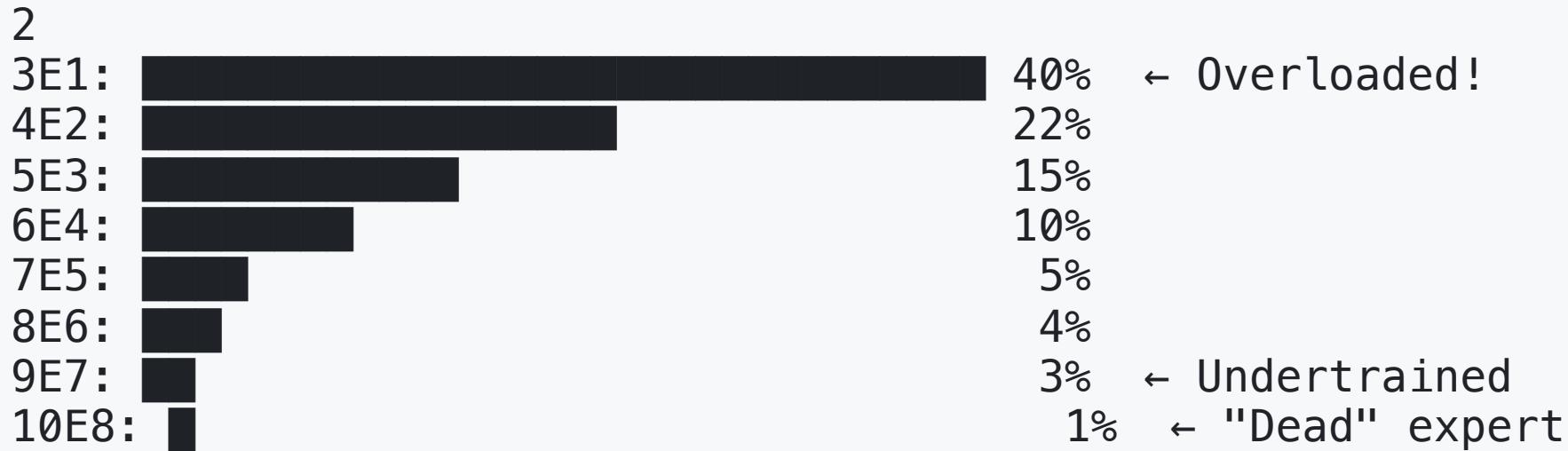
...continued

Note: This is simplified. Production implementations handle batching and load balancing more efficiently.

Load Balancing Problem

Problem: Without balancing, some experts get overused!

1Expert Usage Distribution (Unbalanced):



Desired (Balanced):

Load Balancing Solutions

Solution 1: Auxiliary Loss (Penalize Imbalance)

```
1def compute_load_balance_loss(router_probs, expert_assignments, alpha=0.01):
2    """Add penalty to main loss for imbalanced routing"""
3    numExperts = router_probs.shape[-1]
4
5    # f_i: fraction of tokens actually sent to expert i
6    tokens_per_expert = expert_assignments.sum(dim=0) # Count per expert
7    f = tokens_per_expert / tokens_per_expert.sum() # [0.4, 0.22, ...]
8
9    # P_i: average routing probability for expert i
10   P = router_probs.mean(dim=0) # [0.35, 0.2, ...]
11
12   # Loss: encourages f and P to both be uniform (1/N each)
13   aux_loss = alpha * numExperts * (f * P).sum()
14   return aux_loss # Added to main training loss
```

Training Instability

Challenges in training MoE:

1. Routing Collapse

- All tokens routed to one or few experts

- *Solution:* Load balancing loss, initialization

2. Expert Imbalance

- Some experts undertrained

- *Solution:* Balanced batching, capacity limits

3. High Variance Gradients

- Discrete routing decisions

- *Solution:* Softmax gating, larger batch sizes

Memory and Communication

MoE Memory Requirements:

Challenge

All experts must be in memory, even if only 2 are active!

Example: Mixtral 8x7B

- 8 experts \times 7B parameters each = 56B total
- But only 2 experts active \rightarrow 14B active parameters
- **Memory:** Need to store all 56B parameters
- **Compute:** Only process 14B parameters per token

Solutions:

Mixtral 8x7B

Mixtral (Jiang et al., 2024)

A state-of-the-art sparse MoE model from Mistral AI with 8 experts, each 7B parameters.

Architecture:

- **Total parameters:** 47B (8 experts \times 7B, minus shared layers)
- **Active parameters:** 13B (only 2 experts active per token)
- **Layers:** 32 transformer blocks
- **Context:** 32K tokens
- **Vocabulary:** 32K tokens (SentencePiece)

Training:

- Open weights (Apache 2.0 license)

Mixtral Performance

Comparison with dense models:

Model	Total Params	Active Params	MMLU Score	Speed vs 70B
Llama 2 13B	13B	13B	55.0	5x faster
Mixtral 8x7B	47B	13B	70.6	5x faster
Llama 2 70B	70B	70B	69.7	1x (baseline)
GPT-3.5	~175B	~175B	70.0	N/A (API)

The Magic of MoE:

1 Mixtral achieves:

2

3 Quality of 70B model (MMLU: 70.6 vs 69.7)

What Do Experts Learn?

Experts naturally specialize without explicit supervision!

Analyzed routing patterns in Mixtral:

Token Type	→ Most Active Experts
1	
2	
3 "def", "class", "import"	→ Expert 2 (Code)
4 "la", "le", "français"	→ Expert 5 (French)
5 "Σ", "∫", "theorem"	→ Expert 7 (Math)
6 "the", "is", "and"	→ Expert 1 (Common words)
7 "neural", "gradient"	→ Expert 3 (Technical)

Concrete Example: Sentence routing

Model Compression Methods

Beyond MoE: Making models smaller and faster

1. Quantization

```
1# Original: 32-bit float (4 bytes/param)
2weight = 0.123456789 # Full precision
3
4# INT8: 8-bit integer (1 byte/param)
5weight_int8 = 31 # Scaled + quantized
6# 4x memory reduction!
7
8# INT4: 4-bit (0.5 byte/param)
9# 8x memory reduction!
```

Llama 2 7B Memory:

Inference Optimizations ⚡

Making generation faster:

1. KV Cache (Essential)

```
1# Without cache: Recompute all attention
2# Token 100 attends to tokens 1-99
3# = O(n2) attention per token!
4
5# With cache: Store previous K,V
6cache = {}
7for token in sequence:
8    k, v = compute_kv(token)
9    cache[pos] = (k, v) # Store!
10   # Only compute attention once
```

2. Flash Attention

State Space Models: Mamba

Alternative to Transformers with linear-time complexity

Transformer Attention: $O(n^2)$

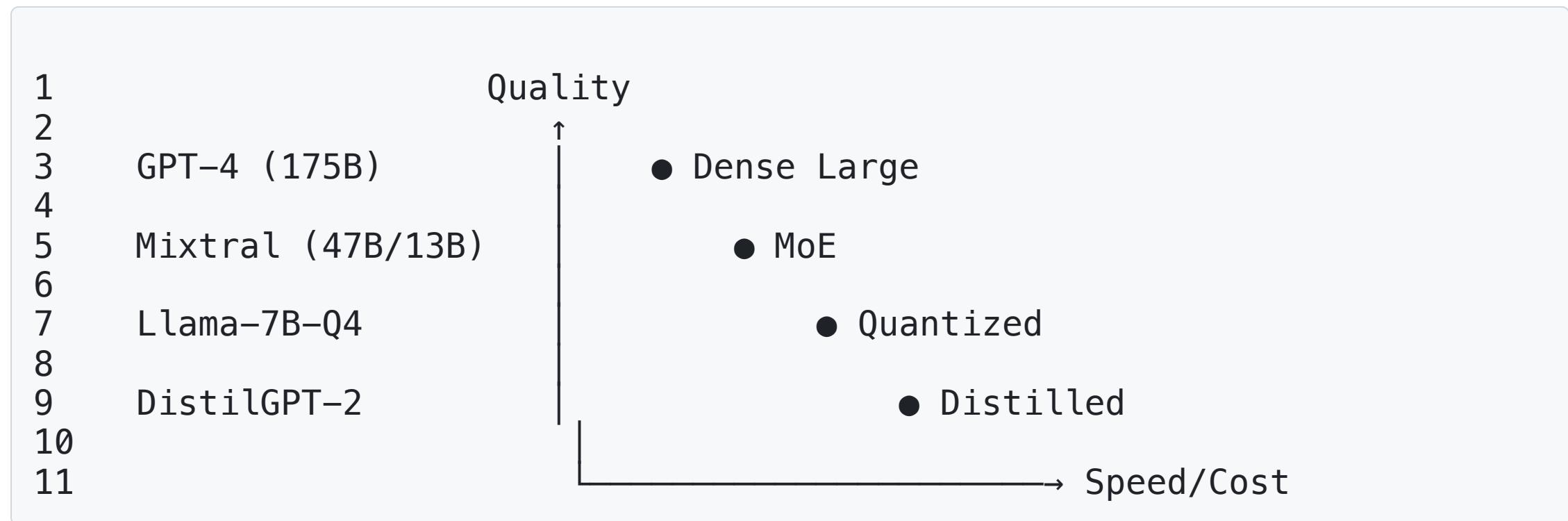
Mamba SSM: $O(n)$

Sequence length:	1K	4K	16K	64K
Compute (relative):	1	4	16	64
3			↑	

Week 9

Efficiency Trade-off Landscape

Choosing the Right Technique for Your Use Case:



Environmental Impact

The carbon cost of large language models:

GPT-3	502	112 cars for 1 year
Llama 2	~539	120 cars for 1 year

Factors affecting carbon footprint:

- Model size (more parameters = more compute)
- Training time
- Hardware efficiency (newer GPUs more efficient)
- Energy source (coal vs solar)
- Location of data center

Democratizing Access

Should powerful AI be accessible to everyone, or only large organizations?

Current reality:

- Training GPT-3 scale model: \$4-12M
- Requires 1000+ GPUs
- Only big tech companies can afford
- Creates AI "haves" and "have-nots"

Efficiency enables democratization:

- Smaller models on consumer hardware
- Open-source weights (Llama, Mixtral, Mistral)
- Efficient fine-tuning (LoRA, QLoRA)

Open vs Closed Models

Closed (GPT-4, Claude):

- Better safety control
- Monetization easier
- Protect IP
- Can update/improve
- No transparency
- Vendor lock-in
- Limited customization
- Privacy concerns

Open (Llama, Mixtral):

- Transparency

Future of Efficient LLMs

Where is the field heading?

1. Hybrid Architectures

- Combine MoE + attention + SSMs
- Use different mechanisms for different parts
- Dynamic architecture selection

2. Conditional Computation

- Adjust depth/width based on input difficulty
- Early exit for easy examples
- More compute for hard problems

3. Neural Architecture Search

- Automatically find efficient architectures

Key Takeaways

1. MoE enables efficient scaling

- More parameters, fewer active per token

- Better quality/compute ratio

2. Challenges exist but solvable

- Load balancing, training instability

- Solutions: auxiliary losses, capacity limits

3. Mixtral proves MoE works at scale

- 70B-quality with 13B-cost

- Open weights accelerate adoption

4. Many paths to efficiency

- Quantization, pruning, distillation

Readings

Required:

1. Shazeer et al. (2017): Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
[\[arXiv\]](#)

2. Jiang et al. (2024): Mixtral of Experts
[\[arXiv\]](#)

Recommended:

- Fedus et al. (2022): Switch Transformers [\[arXiv\]](#)
- Gu & Dao (2023): Mamba [\[arXiv\]](#)
- Dao et al. (2022): FlashAttention [\[arXiv\]](#)
- Strubell et al. (2019): Energy and Policy Considerations [\[arXiv\]](#)

Questions?

Next: Ethics, Bias, and Safety!