
Lecture 25: Mixture of Experts & Efficiency

Scaling Efficiently with Sparse Models

PSYC 51.07: Models of Language and Communication

Week 9

PSYC 51.07: Models of Language and Communication

Week 9 1

Today's Journey

What we'll cover
1. The Scaling Problem: Why bigger isn't always better

2. Mixture of Experts: Sparse activation for efficiency

3. How MoE Works: Routing, load balancing, training

4. Real-World MoE: Mixtral and production systems

5. Other Efficiency Techniques: Quantization, pruning, distillation

PSYC 51.07: Models of Language and Communication

Week 9 2

The Scaling Dilemma

Larger models perform better... but at what cost?

Training a 175B parameter model (GPT-3 scale):

 Cost: $4-12 million in compute

 Energy: Equivalent to 120 homes for a year

 Time: Weeks to months on thousands of GPUs

 Inference: Slow and expensive ($0.002-0.02 per 1K tokens)

 Environmental: Massive carbon footprint

The Challenge
Can we get the benefits of scale without the full computational cost?

Key Insight: Not all parameters need to be active for every input!

PSYC 51.07: Models of Language and Communication

Week 9 3

Dense vs Sparse Models

Dense Models (e.g., GPT-3):

1Input Token
2 ↓
3[████████████████] ← All neurons active
4[████████████████] ← 100% of parameters used
5[████████████████] ← Every forward pass
6 ↓
7Output

175B parameters, 175B active

High compute per token

Simple architecture

Sparse Models (MoE):

PSYC 51.07: Models of Language and Communication

Week 9 4

What is Mixture of Experts?

Mixture of Experts (MoE)

A neural network architecture where different "expert" sub-networks specialize in different
parts of the input space, with a gating mechanism that routes inputs to the appropriate

experts.

Key Components:

1. Experts: Multiple specialized feed-forward networks

2. Router/Gate: Learned function that assigns inputs to experts

3. Sparse Activation: Only top-k experts process each input

Intuition:

Different experts become good at different things

Math expert, code expert, language expert, etc.

PSYC 51.07: Models of Language and Communication

Week 9 5

MoE Architecture

Input x Router g(x) Expert 1 Weighted Sum Output y

Expert 2 Weighted Sum

Expert 3 Weighted Sum

Expert 4-8

Concrete Example: Processing "def factorial(n):"

1# Router computes scores for each expert
2router_logits = router(token_embedding) # Shape: (8,) for 8 experts
3# [0.1, 0.9, 0.3, 0.2, 0.1, 0.1, 0.1, 0.1] # Expert 2 (Code) scores highest!
4
5# Select top-2 experts
6top k indices = [1, 2] # Expert 2 (Code) and Expert 3 (Language)

PSYC 51.07: Models of Language and Communication

Week 9 6

The Router Mechanism

Step-by-step routing for a single token:

1import torch.nn.functional as F
2
3def route_token(x, router_weights, num_experts=8, k=2):
4 """Route a token to top-k experts"""
5 # Step 1: Compute routing scores (linear projection)
6 # router_weights: (hidden_dim, num_experts)
7 logits = x @ router_weights # Shape: (num_experts,)
8 # Example: [-0.5, 2.1, 1.3, 0.2, -0.1, 0.0, -0.3, 0.1]
9
10 # Step 2: Convert to probabilities
11 probs = F.softmax(logits, dim=-1)
12 # Example: [0.04, 0.52, 0.24, 0.08, 0.03, 0.03, 0.03, 0.03]
13
14 # Step 3: Select top-k experts
15 top_k_probs, top_k_indices = torch.topk(probs, k)
16 # indices: [1, 2], probs: [0.52, 0.24]

PSYC 51.07: Models of Language and Communication

Week 9 7

The Router Mechanism

21
22 return top_k_indices, top_k_probs
23 # Expert 1 handles 68%, Expert 2 handles 32%

...continued

PSYC 51.07: Models of Language and Communication

Week 9 8

MoE in PyTorch (Simplified)

1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4
5class MoELayer(nn.Module):
6 def __init__(self, d_model, num_experts, expert_capacity, k=2):
7 super().__init__()
8 self.num_experts = num_experts
9 self.k = k # Top-k routing
10
11 # Router
12 self.gate = nn.Linear(d_model, num_experts)
13
14 # Experts (simple FFN for each)
15 self.experts = nn.ModuleList([
16 nn.Sequential(
17 nn.Linear(d_model, 4 * d_model),
18 nn.ReLU(),

PSYC 51.07: Models of Language and Communication

Week 9 9

MoE in PyTorch (Simplified)

21 for _ in range(num_experts)
22])
23
24 def forward(self, x):
25 # x: (batch_size, seq_len, d_model)
26 batch_size, seq_len, d_model = x.shape
27
28 # Compute routing scores
29 router_logits = self.gate(x) # (batch, seq, num_experts)
30 router_probs = F.softmax(router_logits, dim=-1)
31
32 # Select top-k experts
33 top_k_probs, top_k_indices = torch.topk(router_probs, self.k, dim=-1)
34 # top_k_probs: (batch, seq, k)
35 # top_k_indices: (batch, seq, k)

...continued

PSYC 51.07: Models of Language and Communication

Week 9 10

MoE Forward Pass (cont.)

1# Initialize output
2 output = torch.zeros_like(x)
3
4 # Route to experts
5 for i in range(self.k):
6 # Get expert indices for this position
7 expert_idx = top_k_indices[:, :, i] # (batch, seq)
8 expert_weight = top_k_probs[:, :, i] # (batch, seq)
9
10 # Process through each expert
11 for expert_id in range(self.num_experts):
12 # Mask for tokens routed to this expert
13 mask = (expert_idx == expert_id)
14
15 if mask.any():
16 # Get tokens for this expert
17 expert_input = x[mask]
18

PSYC 51.07: Models of Language and Communication

Week 9 11

MoE Forward Pass (cont.)

21
22 # Add weighted output
23 output[mask] += expert_weight[mask].unsqueeze(-1) * expert
24
25 return output

...continued
Note: This is simplified. Production implementations handle batching and load balancing

more efficiently.

PSYC 51.07: Models of Language and Communication

Week 9 12

Load Balancing Problem

Problem: Without balancing, some experts get overused!

1Expert Usage Distribution (Unbalanced):
2
3E1: ████████████████████████████████ 40% ← Overloaded!
4E2: ██████████████████ 22%
5E3: ████████████ 15%
6E4: ████████ 10%
7E5: ████ 5%
8E6: ███ 4%
9E7: ██ 3% ← Undertrained
10E8: █ 1% ← "Dead" expert

Desired (Balanced):

1E1: ████████████ 12.5%

PSYC 51.07: Models of Language and Communication

Week 9 13

Load Balancing Solutions

Solution 1: Auxiliary Loss (Penalize Imbalance)

1def compute_load_balance_loss(router_probs, expert_assignments, alpha=0.01):
2 """Add penalty to main loss for imbalanced routing"""
3 num_experts = router_probs.shape[-1]
4
5 # f_i: fraction of tokens actually sent to expert i
6 tokens_per_expert = expert_assignments.sum(dim=0) # Count per expert
7 f = tokens_per_expert / tokens_per_expert.sum() # [0.4, 0.22, ...]
8
9 # P_i: average routing probability for expert i
10 P = router_probs.mean(dim=0) # [0.35, 0.2, ...]
11
12 # Loss: encourages f and P to both be uniform (1/N each)
13 aux_loss = alpha * num_experts * (f * P).sum()
14 return aux_loss # Added to main training loss

Solution 2: Expert Capacity Limits

PSYC 51.07: Models of Language and Communication

Week 9 14

Training Instability

Challenges in training MoE:

1. Routing Collapse
All tokens routed to one or few experts

Solution: Load balancing loss, initialization

2. Expert Imbalance

Some experts undertrained

Solution: Balanced batching, capacity limits

3. High Variance Gradients
Discrete routing decisions

Solution: Softmax gating, larger batch sizes

PSYC 51.07: Models of Language and Communication

Week 9 15

Memory and Communication

MoE Memory Requirements:

Challenge
All experts must be in memory, even if only 2 are active!

Example: Mixtral 8x7B

8 experts × 7B parameters each = 56B total

But only 2 experts active → 14B active parameters

Memory: Need to store all 56B parameters

Compute: Only process 14B parameters per token

Solutions:

1. Expert Parallelism: Distribute experts across GPUs

PSYC 51.07: Models of Language and Communication

Week 9 16

Mixtral 8x7B

Mixtral (Jiang et al., 2024)

A state-of-the-art sparse MoE model from Mistral AI with 8 experts, each 7B parameters.

Architecture:

Total parameters: 47B (8 experts × 7B, minus shared layers)

Active parameters: 13B (only 2 experts active per token)

Layers: 32 transformer blocks

Context: 32K tokens

Vocabulary: 32K tokens (SentencePiece)

Training:

Open weights (Apache 2.0 license)

Multilingual (English French German Spanish Italian)

PSYC 51.07: Models of Language and Communication

Week 9 17

Mixtral Performance

Comparison with dense models:

Model Total Params Active Params MMLU Score Speed vs 70B

Llama 2 13B 13B 13B 55.0 5× faster

Mixtral 8x7B 47B 13B 70.6 5× faster

Llama 2 70B 70B 70B 69.7 1× (baseline)

GPT-3.5 ~175B ~175B 70.0 N/A (API)

The Magic of MoE:

1Mixtral achieves:
2┌───┐
3│ Quality of 70B model (MMLU: 70.6 vs 69.7) │
4│ S d f 13B d l (l 13B ti) │

PSYC 51.07: Models of Language and Communication

Week 9 18

What Do Experts Learn?

Experts naturally specialize without explicit supervision!

Analyzed routing patterns in Mixtral:

1Token Type → Most Active Experts
2───
3"def", "class", "import" → Expert 2 (Code)
4"la", "le", "français" → Expert 5 (French)
5"∑", "∫", "theorem" → Expert 7 (Math)
6"the", "is", "and" → Expert 1 (Common words)
7"neural", "gradient" → Expert 3 (Technical)

Concrete Example: Sentence routing

1"The neural network learns via backpropagation"
2 │ │ │ │ │ │

PSYC 51.07: Models of Language and Communication

Week 9 19

Model Compression Methods

Beyond MoE: Making models smaller and faster

1. Quantization

1# Original: 32-bit float (4 bytes/param)
2weight = 0.123456789 # Full precision
3
4# INT8: 8-bit integer (1 byte/param)
5weight_int8 = 31 # Scaled + quantized
6# 4× memory reduction!
7
8# INT4: 4-bit (0.5 byte/param)
9# 8× memory reduction!

Llama 2 7B Memory:

FP32: 28 GB

PSYC 51.07: Models of Language and Communication

Week 9 20

Inference Optimizations

Making generation faster:

1. KV Cache (Essential)

1# Without cache: Recompute all attention
2# Token 100 attends to tokens 1-99
3# = O(n²) attention per token!
4
5# With cache: Store previous K,V
6cache = {}
7for token in sequence:
8 k, v = compute_kv(token)
9 cache[pos] = (k, v) # Store!
10 # Only compute attention once

2. Flash Attention

PSYC 51.07: Models of Language and Communication

Week 9 21

State Space Models: Mamba

Alternative to Transformers with linear-time complexity

Transformer Attention: O(n²)

1Sequence length: 1K 4K 16K 64K
2Compute (relative): 1 16 256 4096
3 ↑
4 Gets expensive fast!

Mamba SSM: O(n)

1Sequence length: 1K 4K 16K 64K
2Compute (relative): 1 4 16 64
3 ↑
4 Linear scaling!

PSYC 51.07: Models of Language and Communication

Week 9 22

Efficiency Trade-off Landscape

Choosing the Right Technique for Your Use Case:

1 Quality
2 ↑
3 GPT-4 (175B) │ ● Dense Large
4 │
5 Mixtral (47B/13B) │ ● MoE
6 │
7 Llama-7B-Q4 │ ● Quantized
8 │
9 DistilGPT-2 │ ● Distilled
10 │
11 └──────────────────────→ Speed/Cost

Technique Best For Trade-off

Dense Large Maximum quality Expensive, slow

PSYC 51.07: Models of Language and Communication

Week 9 23

Environmental Impact

The carbon cost of large language models:

GPT-3 502 112 cars for 1 year

Llama 2 ~539 120 cars for 1 year

Factors affecting carbon footprint:

Model size (more parameters = more compute)

Training time

Hardware efficiency (newer GPUs more efficient)

Energy source (coal vs solar)

Location of data center

Source: Strubell et al. (2019) - "Energy and Policy Considerations for Deep Learning in

PSYC 51.07: Models of Language and Communication

Week 9 24

Democratizing Access

Should powerful AI be accessible to everyone, or only large organizations?

Current reality:

Training GPT-3 scale model: $4-12M

Requires 1000+ GPUs

Only big tech companies can afford

Creates AI "haves" and "have-nots"

Efficiency enables democratization:

 Smaller models on consumer hardware

 Open-source weights (Llama, Mixtral, Mistral)

 Efficient fine-tuning (LoRA, QLoRA)

PSYC 51.07: Models of Language and Communication

Week 9 25

Open vs Closed Models

Closed (GPT-4, Claude):

 Better safety control

 Monetization easier

 Protect IP

 Can update/improve

 No transparency

 Vendor lock-in

 Limited customization

 Privacy concerns

Open (Llama, Mixtral):

Transparency

PSYC 51.07: Models of Language and Communication

Week 9 26

Future of Efficient LLMs

Where is the field heading?

1. Hybrid Architectures
Combine MoE + attention + SSMs

Use different mechanisms for different parts

Dynamic architecture selection

2. Conditional Computation

Adjust depth/width based on input difficulty

Early exit for easy examples

More compute for hard problems

3. Neural Architecture Search

Automatically find efficient architectures

PSYC 51.07: Models of Language and Communication

Week 9 27

Key Takeaways

1. MoE enables efficient scaling

More parameters, fewer active per token

Better quality/compute ratio

2. Challenges exist but solvable
Load balancing, training instability

Solutions: auxiliary losses, capacity limits

3. Mixtral proves MoE works at scale

70B-quality with 13B-cost

Open weights accelerate adoption

4. Many paths to efficiency
Quantization pruning distillation

PSYC 51.07: Models of Language and Communication

Week 9 28

Readings

Required:

1. Shazeer et al. (2017): Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer

[arXiv]

2. Jiang et al. (2024): Mixtral of Experts
[arXiv]

Recommended:

Fedus et al. (2022): Switch Transformers [arXiv]

Gu & Dao (2023): Mamba [arXiv]

Dao et al. (2022): FlashAttention [arXiv]

Strubell et al. (2019): Energy and Policy Considerations [arXiv]

PSYC 51.07: Models of Language and Communication

Week 9 29

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1906.02243

Questions?

Next: Ethics, Bias, and Safety!

PSYC 51.07: Models of Language and Communication

Week 9 30

