PSYC 51.07: Models of Language and Communication

Lecture 25: Mixture of Experts & Efficiency

Scaling Efficiently with Sparse Models %

PSYC 51.07: Models of Language and Communication
Week 9

Week 9

PSYC 51.07: Models of Language and Communication

Today's Journey ¥4

What we'll cover

Week 9

1. The Scaling Problem: Why bigger isn't always better
2. Mixture of Experts: Sparse activation for efficiency
3. How MoE Works: Routing, load balancing, training

4. Real-World MoE: Mixtral and production systems

5. Other Efficiency Techniques: Quantization, pruning, distillation

PSYC 51.07: Models of Language and Communication

The Scaling Dilemma #~/

Larger models perform better... but at what cost?
Training a 175B parameter model (GPT-3 scale):

e $ Cost: $4-12 million in compute

° Energy: Equivalent to 120 homes for a year

e _ Time: Weeks to months on thousands of GPUs

e io Inference: Slow and expensive ($0.002-0.02 per 1K tokens)
e @ Environmental: Massive carbon footprint

The Challenge
Can we get the benefits of scale without the full computational cost?

weo K€Y Insight: Not all parameters need to be active for every input!

PSYC 51.07: Models of Language and Communication

Dense vs Sparse Models @

Dense Models (e.g., GPT-3):

1Input Token

2 !
3[] « All neurons active

L 1
A - 100% of parameters used

S - Every forward pass
6 !

/70utput

o 1/5B parameters, 1/5B active
e High compute per token

e Simple architecture

week Sparse Models (MoE):

PSYC 51.07: Models of Language and Communication

What is Mixture of Experts?

Mixture of Experts (MoE)

A neural network architecture where different "expert" sub-networks specialize in different
parts of the input space, with a gating mechanism that routes inputs to the appropriate
experts.

Key Components:

1. Experts: Multiple specialized feed-forward networks
2.Router/Gate: Learned function that assigns inputs to experts

3. Sparse Activation: Only top-k experts process each input
Intuition:

o Different experts become good at different things
Week 9

e Math expert code expert lanauaae expert. etc.

PSYC 51.07: Models of Language and Communication

MoE Architecture AT

[Input x] —_— [Router g(x)] —_— [Expert 1] —_— Weighted Sum —_— [Output y]
)
— Expert 2 — [Weighted Sum]
. J
\
—> Expert 3 —> Weighted Sum
\, J
S [Expert 4-8]

Concrete Example: Processing "def factorial(n):"

1# Router computes scores for each expert
2router_logits = router(token_embedding) # Shape: (8,) for 8 experts

3# [0.1, 0.9, 0.3, 0.2, 0.1, 0.1, 0.1, 0.1] # Expert 2 (Code) scores highest!
4

week 9 5# Select top-2 experts 6
6ton k indicec = [1 2] # Expert 2?2 (Code) and Fxnert R (| anaiiaae)

PSYC 51.07: Models of Language and Communication

The Router Mechanism @

Step-by-step routing for a single token:

limport torch.nn.functional as F

2

3def route_token(x, router_weights, num_experts=8, k=2):

4 """Route a token to top-k experts"""

5 # Step 1: Compute routing scores (linear projection)

6 # router_weights: (hidden_dim, num_experts)

7/ logits = x @ router_weights # Shape: (num_experts,)

8 # Example: [-0.5, 2.1, 1.3, 0.2, -0.1, 0.0, -0.3, 0.1]
9

10 # Step 2: Convert to probabilities
11 probs = F.softmax(logits, dim=-1)
12 # Example: [0.04, 0.52, 0.24, 0.08, 0.03, 0.03, 0.03, 0.03]

14 # Step 3: Select top-k experts
Week 9 15 top_k_probs, top_k _indices = torch.topk(probs, k)
16 # indices: [1. 21, probs: [0.52, 0.24]

PSYC 51.07: Models of Language and Communication

The Router Mechanism @

21
22 return top_k_indices, top_k_probs
23 # Expert 1 handles 68%, Expert 2 handles 32%

...continued

Week 9

PSYC 51.07: Models of Language and Communication

MoE in PyTorch (Simplified)

limport torch
2import torch.nn as nn
3import torch.nn.functional as F

4

5class MoELayer(nn.Module):

6 def __init__ (self, d_model, num_experts, expert_capacity, k=2):
7 super().__init__ ()

38 self.num_experts = num_experts

9 self.k = k # Top—-k routing

10

11 # Router

12 self.gate = nn.Linear(d_model, num_experts)
13

14 # Experts (simple FFN for each)

15 self.experts = nn.ModulelList([

16 nn.Sequential(
Week 9 17 nn.Linear(d_model, 4 *x d_model),
18 nn.RelLU(),

PSYC 51.07: Models of Language and Communication

MoE in PyTorch (Simplified)

21 for _ in range(num_experts)

22 1)

23

24 def forward(self, x):

25 # x: (batch_size, seq_len, d_model)

26 batch_size, seq_len, d_model = x.shape

27

28 # Compute routing scores

29 router_logits = self.gate(x) # (batch, seq, num_experts)
30 router_probs = F.softmax(router_logits, dim=-1)

31

32 # Select top-k experts

33 top_k_probs, top_k_indices = torch.topk(router_probs, self.k, dim=-1)
34 # top_k_probs: (batch, seq, k)

35 # top_k_indices: (batch, seq, k)

Week 9 continued 10

PSYC 51.07: Models of Language and Communication

MoE Forward Pass (cont.)

1# Initialize output

output = torch.zeros_like(x)

Route to experts

for i in range(self.k):
Get expert indices for this position
expert_idx = top_k_indices[:, :, il # (batch, seq)
expert_weight = top_k_probs[:, :, i] # (batch, seq)

Process through each expert

for expert_id in range(self.num_experts):
Mask for tokens routed to this expert
mask = (expert_idx == expert_id)

if mask.any():
Get tokens for this expert
expert_input = x[mask]

11

PSYC 51.07: Models of Language and Communication

MoE Forward Pass (cont.)

21
22 # Add weighted output
23 output[mask] += expert_weight[mask].unsqueeze(-1) x expert
24
25 return output
...continued

Note: This is simplified. Production implementations handle batching and load balancing
more efficiently.

Week 9 12

PSYC 51.07: Models of Language and Communication

Load Balancing Problem 22

Problem: Without balancing, some experts get overused!

1Expert Usage Distribution (Unbalanced):

2

3EL: I 40% < Overloaded!
4E2: 22%

SE3: I 15%

oE4: 1N 10%

7E5: R 5%

8E6: R 4%

Ot7: IR 3% <« Undertrained
10E8: |} 1% <« "Dead" expert

Desired (Balanced):

Week 9

1E1: D 12.5%

PSYC 51.07: Models of Language and Communication

Load Balancing Solutions “»

Solution 1: Auxiliary Loss (Penalize Imbalance)

1ldef compute_load_balance_loss(router_probs, expert_assignments, alpha=0.01):

OCooNOULLEAWN

10
11
12
13
14
Week 9

"""Add penalty to main loss for imbalanced routing"™"
num_experts = router_probs.shape[-1]

f_1i: fraction of tokens actually sent to expert 1
tokens_per_expert = expert_assignments.sum(dim=0) # Count per expert
f = tokens_per_expert / tokens_per_expert.sum() # [0.4, 0.22, ...]

P_i: average routing probability for expert i
P = router_probs.mean(dim=0) # [0.35, 0.2, ...]

Loss: encourages f and P to both be uniform (1/N each)
aux_loss = alpha *x num_experts *x (f x P).sum()
return aux_loss # Added to main training loss
14

o Y T Y o Y o Y . Y- T L L Ty

PSYC 51.07: Models of Language and Communication

Training Instability !

Challenges in training MoE:

1. Routing Collapse
o All tokens routed to one or few experts

e Solution: Load balancing loss, initialization

2. Expert Imbalance
o Some experts undertrained

e Solution: Balanced batching, capacity limits

3. High Variance Gradients
o Discrete routing decisions

week o ® Solution: Softmax gating, larger batch sizes

15

PSYC 51.07: Models of Language and Communication

Memory and Communication [}

MoE Memory Requirements:

Challenge
All experts must be in memory, even if only 2 are active!

Example: Mixtral 8x7B

o 8 experts x /B parameters each = 56B total
e But only 2 experts active > 14B active parameters
e Memory: Need to store all 56B parameters

o Compute: Only process 14B parameters per token
Solutions:

week 9 1. Expert Parallelism: Distribute experts across GPUs

16

PSYC 51.07: Models of Language and Communication

Mixtral 8x7B &&

Mixtral (Jiang et al., 2024)
A state-of-the-art sparse MoE model from Mistral Al with 8 experts, each 7B parameters.

Architecture:

o Total parameters: 4/B (8 experts x 7B, minus shared layers)
e Active parameters: 13B (only 2 experts active per token)
o Layers: 32 transformer blocks

Context: 32K tokens

Vocabulary: 32K tokens (SentencePiece)
Training:

e Open weights (Apache 2.0 license)

Week 9

R A Iz 0 fAfr=___1° 1 ™ 1 Vo YUY . L Iz 1°* \

PSYC 51.07: Models of Language and Communication

Mixtral Performance ul

Comparison with dense models:

Model Total Params Active Params MMLU Score Speedvs 70B

Llama2 13B 13B 13B 55.0 bx faster

Mixtral 8x7B 47B 13B 70.6 5x faster

Llama 2 70B 70B /0B 69.7 1x (baseline)

GPT-3.5 ~175B ~1758B 70.0 N/A (API)
The Magic of MoE:

IMixtral achieves:

Week 9 2

3

Quality of 70B model (MMLU: 70.6 vs 69.7)

18

PSYC 51.07: Models of Language and Communication

What Do Experts Learn? 2

Experts naturally specialize without explicit supervision!

Analyzed routing patterns in Mixtral:

1Token Type -» Most Active Experts

2

3"def", "class", "import" - Expert 2 (Code)

4" 1a", "le", "francais" - Expert 5 (French)

5"y, "[", "theorem" - Expert 7 (Math)

6"the", "is", "and" - Expert 1 (Common words)
7"neural", '"gradient" - Expert 3 (Technical)

Concrete Example: Sentence routing

weeko 1"The neural network learns via backpropagation"

2 | | | | I |

19

PSYC 51.07: Models of Language and Communication

Model Compression Methods G,

Beyond MoE: Making models smaller and faster

1. Quantization

1# Original: 32-bit float (4 bytes/param)
2weight = 0.123456789 # Full precision

3

A# INT8: 8-bit integer (1 byte/param)
S5weight_int8 = 31 # Scaled + quantized
6# 4x memory reduction!

7

8# INT4: 4-bit (0.5 byte/param)

O# 8x memory reduction!

Llama 2 7B Memory:

Week 9

e FP32: 28 GB

PSYC 51.07: Models of Language and Communication

Wee

Inference Optimizations

Making generation faster:

1. KV Cache (Essential)

1# Without cache: Recompute all attention
2# Token 100 attends to tokens 1-99

3# = 0(n2) attention per token!

4

5# With cache: Store previous K,V

6cache = {}

/for token 1in sequence:

8 k, v = compute_kv(token)

9 cache[pos] = (k, v) # Store!

10 # Only compute attention once

kg. Flash Attention

21

PSYC 51.07: Models of Language and Communication

State Space Models: Mamba ¢J

Alternative to Transformers with linear-time complexity

Transformer Attention: O(n?)

1Sequence length: 1K 4K 16K 64K
2Compute (relative): 1 16 256 4096
3 1

4 Gets expensive fast!

Mamba SSM: O(n)

1Sequence length: 1K 4K 16K 04K
2Compute (relative): 1 4 16 64
3 1

Week 9 4 Linear scaling!

22

PSYC 51.07: Models of Language and Communication

Efficiency Trade-off Landscape ¥%

Choosing the Right Technique for Your Use Case:

1 Quality

2 1

3 GPT-4 (175B) e Dense Large

4

5 Mixtral (47B/13B) e MoE

6

7 L lama-7B-Q4 ® Quantized

8

9 DistilGPT-2 ® Distilled
10

11 » Speed/Cost
Technique Best For Trade-off

Week 9 . . .
Dense Large Maximum quality Expensive, slow

PSYC 51.07: Models of Language and Communication

Environmental Impact &

The carbon cost of large language models:

GPT-3 502 112carsfor 1 year
Llama 2 ~539 120 carsfor 1 year

Factors affecting carbon footprint:

e Model size (more parameters = more compute)

e Training time

Hardware efficiency (newer GPUs more efficient)
e Energy source (coal vs solar)

e Location of data center

ee 24
! kg“ourc:e: Strubell et al. (2019) - "Energy and Policy Considerations for Deep Learning in

PSYC 51.07: Models of Language and Communication

Democratizing Access

Should powerful Al be accessible to everyone, or only large organizations?

Current reality:

e Training GPT-3 scale model: $4-12M
e Requires 1000+ GPUs
e Only big tech companies can afford

e Creates Al "haves" and "have-nots"
Efficiency enables democratization:

o Smaller models on consumer hardware
o [72 Open-source weights (Llama, Mixtral, Mistral)
weeko o B4 Efficient fine-tuning (LoRA, QLoRA)

25

PSYC 51.07: Models of Language and Communication

Open vs Closed Models &

Closed (GPT-4, Claude):

. Better safety control
. Monetization easier
e Protect IP

o Can update/improve
« X No transparency

« X Vendor lock-in

X Limited customization

« X Privacy concerns

Open (Llama, Mixtral):

Week 9
7 S

26

PSYC 51.07: Models of Language and Communication

Future of Efficient LLMs &

Where is the field heading?

1. Hybrid Architectures
o Combine MoE + attention + SSMs

Use different mechanisms for different parts

e Dynamic architecture selection

2. Conditional Computation
o Adjust depth/width based on input difficulty

e Early exit for easy examples

o More compute for hard problems

week o 3- Neural Architecture Search

~ AritArmAatiAaallhhs finA AffiA~niAant AarcrRIFAAR IFAC

27

PSYC 51.07: Models of Language and Communication

Key Takeaways /#

1. MoE enables efficient scaling
o More parameters, fewer active per token

o Better quality/compute ratio

2. Challenges exist but solvable
o Load balancing, training instability

e Solutions: auxiliary losses, capacity limits

3. Mixtral proves MoE works at scale
o /0B-quality with 13B-cost

e Open weights accelerate adoption

week o 4. Many paths to efficiency

N~ N 1amntFimAtiAarn ~riimtidnea AiatrillAdsiAN

28

PSYC 51.07: Models of Language and Communication

Readings LJ

Required:

1. Shazeer et al. (2017): Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer
[arXiv]

2.Jiang et al. (2024): Mixtral of Experts
[arXiv]

Recommended:

e Fedus et al. (2022): Switch Transformers [arXiv]

e Gu & Dao (2023): Mamba [arXiv]

e Dao et al. (2022): FlashAttention [arXiv]

o Strubell et al. (2019): Energy and Policy Considerations [arXiv]

Week 9

29

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1906.02243

PSYC 51.07: Models of Language and Communication

Questions?

Next: Ethics, Bias, and Safety!

Week 9

30

