

Lecture 24: Retrieval Augmented Generation

Grounding LLMs in External Knowledge

PSYC 51.07: Models of Language and Communication

Week 9

Today's Journey

What we'll cover

- 1. The Problem:** Why parametric memory isn't enough
- 2. RAG Basics:** Retrieve, Augment, Generate
- 3. Implementation:** Building RAG systems step-by-step
- 4. Advanced Techniques:** Self-RAG, Corrective RAG, HyDE
- 5. Production Challenges:** Making RAG work in the real world

The Limits of Parametric Memory

What are the fundamental limitations of storing knowledge in model parameters?

Problems with purely parametric models:

- **✗ Knowledge cutoff:** No information after training date
- **✗ Hallucinations:** Models confidently generate false information
- **✗ No source attribution:** Can't cite where information comes from
- **✗ Expensive updates:** Retraining for new information costs millions
- **✗ Privacy concerns:** Sensitive data baked into parameters
- **✗ Domain specificity:** Limited knowledge of specialized domains
- **✗ Outdated facts:** World changes but model weights don't

Week 9 **Solution:** Combine parametric knowledge with non-parametric retrieval!

JUL
17

Example: Knowledge Cutoff Problem

User Query (Dec 2024)

"Who won the 2024 US Presidential election?"

Parametric-only LLM:

{X} "I apologize, but my knowledge was last updated in April 2023, so I cannot tell you about the 2024 election results."

Or worse: Hallucinates an answer!

RAG-enhanced LLM:

{✓} "According to CNN (retrieved Nov 6, 2024), [actual winner] won the 2024 US Presidential election with [details]."

Week 9 Provides: Fresh info + source!

Retrieval Augmented Generation: Definition

RAG (Lewis et al., 2020)

A technique that enhances LLMs by retrieving relevant documents from an external knowledge base and using them to inform generation.

Core Idea: Instead of relying only on learned parameters, the model can "look things up"!

Traditional LLM:

- Question → Model → Answer
- Only parametric knowledge
- Fixed at training time
- No sources

RAG Pipeline:

Week 9

Question → Pipeline →

RAG Architecture

Worked Example: "What causes the Northern Lights?"

Step	Action	Result
1. Embed	Convert query to vector	[0.12, -0.45, 0.78, ...] (384 dims)
2. Search	Find similar vectors in DB	Top-3 docs: scores 0.92, 0.87, 0.85
3. Retrieve	Get actual text chunks	"Aurora borealis occurs when..."
4. Augment	Add context to prompt	System + Context + Query
5. Generate	LLM produces answer	Grounded response with citations

RAG: Step-by-Step Walkthrough

Query: "What is the capital of Kazakhstan?"

```
1# Step 1: Embed the query
2query = "What is the capital of Kazakhstan?"
3query_embedding = embedding_model.encode(query)
4# Result: numpy array of shape (384,)
5
6# Step 2: Search vector database
7results = vector_db.search(query_embedding, top_k=3)
8# Returns:
9#   {"text": "Astana is the capital of Kazakhstan...", "score": 0.94},
10#   {"text": "Kazakhstan's capital moved from Almaty...", "score": 0.89},
11#   {"text": "The city was renamed Nur-Sultan in 2019...", "score": 0.85}
12# ]
13
14# Step 3: Build augmented prompt
15context = "\n".join([r["text"] for r in results])
16prompt = f"""Answer based on the context below.
```

RAG: Step-by-Step Walkthrough

```
21# Step 4: Generate with LLM
22response = llm.generate(prompt)
23# "Astana (previously known as Nur-Sultan) is the capital of Kazakhstan."
```

...continued

RAG Components Deep Dive

1. Document Processing

```
1# Chunking example
2from langchain.text_splitter import RecursiveCharacterTextSplitter
3
4splitter = RecursiveCharacterTextSplitter(
5    chunk_size=500,      # Target size
6    chunk_overlap=50,    # Overlap between chunks
7    separators=["\n\n", "\n", ". ", " "]
8)
9
10chunks = splitter.split_text(long_document)
11# ["First chunk about topic A....",
12#  "Second chunk continues topic A....",
13#  "Third chunk about topic B...."]
```

RAG Implementation Example

Basic RAG with LangChain:

```
1from langchain.vectorstores import Chroma
2from langchain.embeddings import HuggingFaceEmbeddings
3from langchain.llms import HuggingFacePipeline
4from langchain.chains import RetrievalQA
5from langchain.document_loaders import TextLoader
6from langchain.text_splitter import RecursiveCharacterTextSplitter
7
8# 1. Load and chunk documents
9loader = TextLoader('knowledge_base.txt')
10documents = loader.load()
11
12text_splitter = RecursiveCharacterTextSplitter(
13    chunk_size=512,
14    chunk_overlap=50
15)
16chunks = text_splitter.split_documents(documents)
```

RAG Implementation Example


```
21)
22vectordb = Chroma.from_documents(
23    documents=chunks,
24    embedding=embeddings,
25    persist_directory='./chroma_db'
26)
27
28# 3. Set up retriever
29retriever = vectordb.as_retriever(
30    search_type="similarity",
31    search_kwargs={"k": 3} # Retrieve top 3 chunks
32)
```

...continued

RAG Implementation (cont.)


```
1# 4. Create LLM
2llm = HuggingFacePipeline.from_model_id(
3    model_id="meta-llama/Llama-2-7b-chat-hf",
4    task="text-generation",
5    model_kwargs={"temperature": 0.7, "max_length": 512}
6)
7
8# 5. Create RAG chain
9qa_chain = RetrievalQA.from_chain_type(
10    llm=llm,
11    retriever=retriever,
12    return_source_documents=True,
13    chain_type="stuff" # How to combine documents
14)
15
16# 6. Query the system
17query = "What is retrieval augmented generation?"
18result = qa_chain({"query": query})
```

RAG Implementation (cont.)


```
21print("\nSources:")
22for doc in result['source_documents']:
23    print(f"- {doc.metadata['source']}: {doc.page_content[:100]}...")
```

...continued

Tutorial: HuggingFace Advanced RAG -

https://huggingface.co/learn/cookbook/advanced_rag

Evolution of RAG Approaches

Approach	Key Innovation	When to Retrieve
Naive RAG	Always retrieve	Every query
Self-RAG	Model decides	Only when needed
Corrective RAG	Verify relevance	Always, but filter
Agentic RAG	Multi-step reasoning	Tool-based decisions

Trend

Moving from always-retrieve to **adaptive, self-correcting** retrieval systems!

Self-RAG: Adaptive Retrieval

Key Innovation: Model decides when to retrieve

Special Tokens Learned:

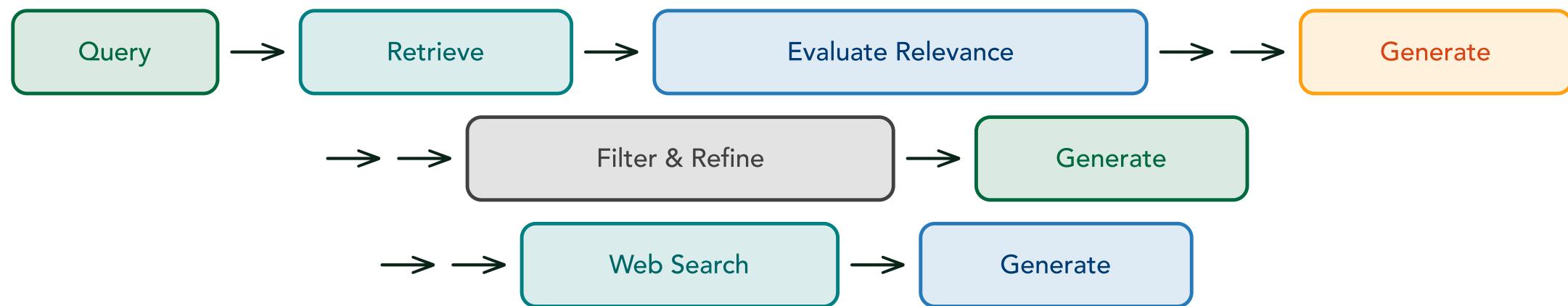
- [Retrieve] - Need external info?
- [Relevant] - Is retrieved doc useful?
- [Support] - Does doc support answer?
- [Useful] - Is answer helpful?

Worked Example:

```
1Q: What's 2+2?  
2[Retrieve: No] # No retrieval needed  
3A: 4  
4
```

Corrective RAG (CRAG) 🔧

Problem: Sometimes retrieved documents are irrelevant or misleading!



Worked Example:

```
1# Query: "Latest COVID vaccine recommendations"
2retrieved_docs = retriever.search(query) # Returns old 2021 docs
3
4# Evaluator scores relevance
5scores = evaluator.score(query, retrieved_docs)
```

Comparing RAG Approaches

Approach	When Retrieve	Filtering	Latency	Best For
Naive RAG	Always	None	Low	Simple Q&A
Self-RAG	Model decides	Self-reflection	Medium	Adaptive needs
Corrective RAG	Always + verify	Relevance scoring	High	High precision
HyDE	Via hypothesis	Similarity	Medium	Complex queries
Agentic RAG	Tool-based	Multi-step	Highest	Complex workflows

Trade-offs Example:

1Simple FAQ bot → Naive RAG (fast, cheap)

2Medical diagnosis assistant → Corrective RAG (accuracy critical)

3Research assistant → Agentic RAG (multi-step reasoning needed)

Chunking Strategies

How you split documents dramatically affects retrieval quality!

Fixed-size (Simple)

```
1# Split every 500 chars
2chunks = [text[i:i+500]
3          for i in range(0, len(text), 500)]
4# Problem: "The mitochondria is the power-"
5# "house of the cell." <- split mid-sentence!
```

Recursive (Better)

```
1splitter = RecursiveCharacterTextSplitter(
2    separators=["\n\n", "\n", ". ", " "],
3    chunk_size=500
4)
```

Embedding Models for Retrieval

Choosing the Right Embedding Model:

Model	Dims	Size	Speed	Quality
all-MiniLM-L6-v2	384	90MB	Fast	Good
BGE-large-en	1024	1.3GB	Medium	Excellent
OpenAI text-embedding-3-small	1536	API	Fast	Excellent

Code Example: Dense vs Hybrid Retrieval

```
1# Dense retrieval (semantic similarity)
2from sentence_transformers import SentenceTransformer
3model = SentenceTransformer('all-MiniLM-L6-v2')
4query_vec = model.encode("What causes headaches?")
5# Finds: "Migraines are often triggered by..." (semantically similar)
```

Vector Databases

Purpose: Fast similarity search over millions of embeddings

Quick Start with ChromaDB:

```
1import chromadb
2
3# Create client and collection
4client = chromadb.Client()
5collection = client.create_collection("my_docs")
6
7# Add documents (auto-embeds!)
8collection.add(
9    documents=["Paris is in France",
10               "Berlin is in Germany"],
11    ids=["doc1", "doc2"]
12)
13
14# Query
```

Prompt Engineering for RAG

Template for Grounded Generation:

```
1RAG_PROMPT = """You are a helpful assistant. Answer the question based ONLY on
2the context provided below. If the answer is not in the context, say
3"I don't have that information."
4
5Context:
6{context}
7
8Question: {question}
9
10Instructions:
11- Use only information from the context above
12- Cite sources using [1], [2], etc.
13- Be concise and accurate
14
15Answer:"""
```

Prompt Engineering for RAG


```
21
22question = "When was the Eiffel Tower built?"
23
24response = llm.generate(RAG_PROMPT.format(context=context, question=question))
25# "The Eiffel Tower was completed in 1889 for the World's Fair [1]."
```

...continued

Key Elements

1. Explicit grounding instruction, 2. Source citation format, 3. Fallback for missing info

Production Challenges

Performance Challenges:

- **Cost:** Embedding generation + storage + inference
- **Latency:** Retrieval adds 50-200ms
- **Context limits:** LLM window size
- **Quality:** Retrieval accuracy
- **Freshness:** Keeping index up-to-date

Solutions:

- Cache embeddings
- Semantic caching (similar queries)
- Incremental indexing
- Re-ranking pipelines

Evaluation Metrics for RAG

How to measure RAG quality:

Retrieval Quality:

- **Recall@k**: Are relevant docs in top-k?
- **MRR (Mean Reciprocal Rank)**: Where is first relevant doc?
- **NDCG (Normalized Discounted Cumulative Gain)**: Ranked quality

Generation Quality:

- **Factual accuracy**: Are answers correct?
- **Faithfulness**: Does answer match retrieved docs?
- **Relevance**: Does answer address the question?
- **Citation quality**: Are sources correctly attributed?

Common RAG Failure Modes

1. Retrieval Failures

- Wrong documents retrieved
- Relevant docs not in knowledge base
- Poor query formulation

2. Context Problems

- Too much irrelevant context
- Context too long for LLM
- Important info not in retrieved chunks

3. Generation Issues

- Ignores retrieved context
- Hallucinates despite good context

Multimodal RAG

Beyond text: Retrieving images, tables, code, etc.

- Vision + Text
- Use CLIP embeddings for images
- Retrieve relevant diagrams, charts
- Generate answers referencing visual content

\item Code Retrieval

- Embed code snippets
- Retrieve relevant functions/examples
- Code completion and debugging

Graph-Based RAG

Combining knowledge graphs with RAG:

Traditional RAG: Flat document chunks

Graph RAG: Documents + relationships

Advantages:

- Capture entity relationships
- Multi-hop reasoning ($A \rightarrow B \rightarrow C$)
- Better for complex queries
- Explicit knowledge structure

Implementation:

HyDE: Hypothetical Document Embeddings

Clever trick: Generate a hypothetical answer first, then retrieve!

```
1# Standard RAG: Query -> Retrieve -> Generate
2query = "What causes the aurora borealis?"
3# Direct embedding may not match scientific docs well
4
5# HyDE: Query -> Generate Hypothesis -> Embed Hypothesis -> Retrieve -> Generate
6hypothesis = llm.generate(f"Write a short explanation: {query}")
7# "The aurora borealis occurs when charged particles from the sun
8# interact with gases in Earth's atmosphere, causing them to glow."
9
10# Now embed the HYPOTHESIS (an answer-like text)
11hypo_embedding = embed(hypothesis)
12docs = vector_db.search(hypo_embedding) # Better match to scientific docs!
13
14# Finally generate with real retrieved docs
15final_answer = llm.generate(query, context=docs)
```

RAG vs Fine-Tuning

When should you use RAG vs fine-tuning your model?

Use RAG when:

- Knowledge changes frequently
- Need citations/provenance
- Privacy concerns (data in DB, not weights)
- Large knowledge base
- Multi-domain applications
- Want to update without retraining

Use Fine-Tuning when:

Future of RAG

Emerging trends and research directions:

1. Agentic RAG

- LLM decides retrieval strategy
- Multi-step reasoning with retrieval
- Tool use (web search, APIs, databases)

2. Long-context RAG

- Models with 1M+ token windows
- Entire books as context
- Retrieval still useful for efficiency

3. Personalized RAG

- User-specific knowledge bases

Key Takeaways

1. RAG solves fundamental LLM limitations

- Knowledge cutoff, hallucination, no citations

2. Core pipeline: Retrieve → Augment → Generate

- Vector search for relevant documents
- Incorporate into prompt

3. Many variants exist

- Naive RAG → Self-RAG → Corrective RAG → Agentic RAG

4. Key components matter

- Chunking strategy, embedding model, vector DB

5. Production requires careful engineering

- Latency, cost, quality evaluation

Readings

Required:

1. **Lewis et al. (2020): Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks**
[\[arXiv\]](#)
2. **Asai et al. (2023): Self-RAG: Learning to Retrieve, Generate, and Critique**
[\[arXiv\]](#)

Recommended:

- Yan et al. (2024): Corrective RAG [\[arXiv\]](#)
- Gao et al. (2022): Precise Zero-Shot Dense Retrieval (HyDE) [\[arXiv\]](#)
- HuggingFace RAG Tutorial [\[Tutorial\]](#)
- LangChain RAG Docs [\[Docs\]](#)

Questions?

Next: Mixture of Experts!