
Lecture 24: Retrieval Augmented Generation

Grounding LLMs in External Knowledge

PSYC 51.07: Models of Language and Communication

Week 9

PSYC 51.07: Models of Language and Communication

Week 9 1

Today's Journey

What we'll cover
1. The Problem: Why parametric memory isn't enough

2. RAG Basics: Retrieve, Augment, Generate

3. Implementation: Building RAG systems step-by-step

4. Advanced Techniques: Self-RAG, Corrective RAG, HyDE

5. Production Challenges: Making RAG work in the real world

PSYC 51.07: Models of Language and Communication

Week 9 2

The Limits of Parametric Memory

What are the fundamental limitations of storing knowledge in model parameters?

Problems with purely parametric models:

Knowledge cutoff: No information after training date

Hallucinations: Models confidently generate false information

No source attribution: Can't cite where information comes from

Expensive updates: Retraining for new information costs millions

Privacy concerns: Sensitive data baked into parameters

Domain specificity: Limited knowledge of specialized domains

Outdated facts: World changes but model weights don't

Solution: Combine parametric knowledge with non-parametric retrieval!

PSYC 51.07: Models of Language and Communication

Week 9 3

Example: Knowledge Cutoff Problem

User Query (Dec 2024)

"Who won the 2024 US Presidential election?"

Parametric-only LLM:

{ } "I apologize, but my knowledge was last updated in April 2023, so I cannot tell you
about the 2024 election results."

Or worse: Hallucinates an answer!

RAG-enhanced LLM:

{ } "According to CNN (retrieved Nov 6, 2024), [actual winner] won the 2024 US
Presidential election with [details]."

Provides: Fresh info + source!

PSYC 51.07: Models of Language and Communication

Week 9 4

Retrieval Augmented Generation: Definition

RAG (Lewis et al., 2020)

A technique that enhances LLMs by retrieving relevant documents from an external
knowledge base and using them to inform generation.

Core Idea: Instead of relying only on learned parameters, the model can "look things up"!

Traditional LLM:

Question → Model → Answer

Only parametric knowledge

Fixed at training time

No sources

RAG Pipeline:

Q estion→ Retrie e Docs

PSYC 51.07: Models of Language and Communication

Week 9 5

RAG Architecture

User Query Embed Query Vector Search Retrieve Docs Augment Prompt LLM Generate Response

Worked Example: "What causes the Northern Lights?"

Step Action Result

1. Embed Convert query to vector [0.12, -0.45, 0.78, ...] (384 dims)

2. Search Find similar vectors in DB Top-3 docs: scores 0.92, 0.87, 0.85

3. Retrieve Get actual text chunks "Aurora borealis occurs when..."

4. Augment Add context to prompt System + Context + Query

5. Generate LLM produces answer Grounded response with citations

PSYC 51.07: Models of Language and Communication

Week 9 6

RAG: Step-by-Step Walkthrough

Query: "What is the capital of Kazakhstan?"

1# Step 1: Embed the query
2query = "What is the capital of Kazakhstan?"
3query_embedding = embedding_model.encode(query)
4# Result: numpy array of shape (384,)
5
6# Step 2: Search vector database
7results = vector_db.search(query_embedding, top_k=3)
8# Returns: [
9# {"text": "Astana is the capital of Kazakhstan...", "score": 0.94},
10# {"text": "Kazakhstan's capital moved from Almaty...", "score": 0.89},
11# {"text": "The city was renamed Nur-Sultan in 2019...", "score": 0.85}
12#]
13
14# Step 3: Build augmented prompt
15context = "\n".join([r["text"] for r in results])
16prompt = f"""Answer based on the context below.

PSYC 51.07: Models of Language and Communication

Week 9 7

RAG: Step-by-Step Walkthrough

21# Step 4: Generate with LLM
22response = llm.generate(prompt)
23# "Astana (previously known as Nur-Sultan) is the capital of Kazakhstan."

...continued

PSYC 51.07: Models of Language and Communication

Week 9 8

RAG Components Deep Dive

1. Document Processing

1# Chunking example
2from langchain.text_splitter import RecursiveCharacterTextSplitter
3
4splitter = RecursiveCharacterTextSplitter(
5 chunk_size=500, # Target size
6 chunk_overlap=50, # Overlap between chunks
7 separators=["\n\n", "\n", ". ", " "]
8)
9
10chunks = splitter.split_text(long_document)
11# ["First chunk about topic A...",
12# "Second chunk continues topic A...",
13# "Third chunk about topic B..."]

2. Embedding & Storage

PSYC 51.07: Models of Language and Communication

Week 9 9

RAG Implementation Example

Basic RAG with LangChain:

1from langchain.vectorstores import Chroma
2from langchain.embeddings import HuggingFaceEmbeddings
3from langchain.llms import HuggingFacePipeline
4from langchain.chains import RetrievalQA
5from langchain.document_loaders import TextLoader
6from langchain.text_splitter import RecursiveCharacterTextSplitter
7
8# 1. Load and chunk documents
9loader = TextLoader('knowledge_base.txt')
10documents = loader.load()
11
12text_splitter = RecursiveCharacterTextSplitter(
13 chunk_size=512,
14 chunk_overlap=50
15)
16chunks = text splitter.split documents(documents)

PSYC 51.07: Models of Language and Communication

Week 9 10

RAG Implementation Example

21)
22vectordb = Chroma.from_documents(
23 documents=chunks,
24 embedding=embeddings,
25 persist_directory="./chroma_db"
26)
27
28# 3. Set up retriever
29retriever = vectordb.as_retriever(
30 search_type="similarity",
31 search_kwargs={"k": 3} # Retrieve top 3 chunks
32)

...continued

PSYC 51.07: Models of Language and Communication

Week 9 11

RAG Implementation (cont.)

1# 4. Create LLM
2llm = HuggingFacePipeline.from_model_id(
3 model_id="meta-llama/Llama-2-7b-chat-hf",
4 task="text-generation",
5 model_kwargs={"temperature": 0.7, "max_length": 512}
6)
7
8# 5. Create RAG chain
9qa_chain = RetrievalQA.from_chain_type(
10 llm=llm,
11 retriever=retriever,
12 return_source_documents=True,
13 chain_type="stuff" # How to combine documents
14)
15
16# 6. Query the system
17query = "What is retrieval augmented generation?"
18result = qa_chain({"query": query})

PSYC 51.07: Models of Language and Communication

Week 9 12

RAG Implementation (cont.)

21print("\nSources:")
22for doc in result['source_documents']:
23 print(f"- {doc.metadata['source']}: {doc.page_content[:100]}...")

...continued

Tutorial: HuggingFace Advanced RAG -
https://huggingface.co/learn/cookbook/advanced_rag

PSYC 51.07: Models of Language and Communication

Week 9 13

https://huggingface.co/learn/cookbook/advanced_rag

Evolution of RAG Approaches

Naive RAG Self-RAG Corrective RAG Agentic RAG

Approach Key Innovation When to Retrieve

Naive RAG Always retrieve Every query

Self-RAG Model decides Only when needed

Corrective RAG Verify relevance Always, but filter

Agentic RAG Multi-step reasoning Tool-based decisions

Trend

Moving from always-retrieve to adaptive, self-correcting retrieval systems!

PSYC 51.07: Models of Language and Communication

Week 9 14

Self-RAG: Adaptive Retrieval

Key Innovation: Model decides when to retrieve

Special Tokens Learned:

[Retrieve] - Need external info?

[Relevant] - Is retrieved doc useful?

[Support] - Does doc support answer?

[Useful] - Is answer helpful?

Worked Example:

1Q: What's 2+2?
2[Retrieve: No] # No retrieval needed
3A: 4
4
5Q Wh th 2024 Ol i ?

PSYC 51.07: Models of Language and Communication

Week 9 15

Corrective RAG (CRAG)

Problem: Sometimes retrieved documents are irrelevant or misleading!

Query Retrieve Evaluate Relevance Generate

Filter & Refine Generate

Web Search Generate

Worked Example:

1# Query: "Latest COVID vaccine recommendations"
2retrieved_docs = retriever.search(query) # Returns old 2021 docs
3
4# Evaluator scores relevance
5scores = evaluator.score(query, retrieved docs)

PSYC 51.07: Models of Language and Communication

Week 9 16

Comparing RAG Approaches

Approach When Retrieve Filtering Latency Best For

Naive RAG Always None Low Simple Q&A

Self-RAG Model decides Self-reflection Medium Adaptive needs

Corrective RAG Always + verify Relevance scoring High High precision

HyDE Via hypothesis Similarity Medium Complex queries

Agentic RAG Tool-based Multi-step Highest Complex workflows

Trade-offs Example:

1Simple FAQ bot → Naive RAG (fast, cheap)
2Medical diagnosis assistant → Corrective RAG (accuracy critical)
3Research assistant → Agentic RAG (multi-step reasoning needed)

PSYC 51.07: Models of Language and Communication

Week 9 17

Chunking Strategies

How you split documents dramatically affects retrieval quality!

Fixed-size (Simple)

1# Split every 500 chars
2chunks = [text[i:i+500]
3 for i in range(0, len(text), 500)]
4# Problem: "The mitochondria is the power-"
5# "house of the cell." <- split mid-sentence!

Recursive (Better)

1splitter = RecursiveCharacterTextSplitter(
2 separators=["\n\n", "\n", ". ", " "],
3 chunk_size=500
4)

PSYC 51.07: Models of Language and Communication

Week 9 18

Embedding Models for Retrieval

Choosing the Right Embedding Model:

Model Dims Size Speed Quality

all-MiniLM-L6-v2 384 90MB Fast Good

BGE-large-en 1024 1.3GB Medium Excellent

OpenAI text-embedding-3-small 1536 API Fast Excellent

Code Example: Dense vs Hybrid Retrieval

1# Dense retrieval (semantic similarity)
2from sentence_transformers import SentenceTransformer
3model = SentenceTransformer('all-MiniLM-L6-v2')
4query_vec = model.encode("What causes headaches?")
5# Finds: "Migraines are often triggered by..." (semantically similar)
6

PSYC 51.07: Models of Language and Communication

Week 9 19

Vector Databases

Purpose: Fast similarity search over millions of embeddings

Quick Start with ChromaDB:

1import chromadb
2
3# Create client and collection
4client = chromadb.Client()
5collection = client.create_collection("my_docs")
6
7# Add documents (auto-embeds!)
8collection.add(
9 documents=["Paris is in France",
10 "Berlin is in Germany"],
11 ids=["doc1", "doc2"]
12)
13
14# Query

PSYC 51.07: Models of Language and Communication

Week 9 20

Prompt Engineering for RAG

Template for Grounded Generation:

1RAG_PROMPT = """You are a helpful assistant. Answer the question based ONLY on
2the context provided below. If the answer is not in the context, say
3"I don't have that information."
4
5Context:
6{context}
7
8Question: {question}
9
10Instructions:
11- Use only information from the context above
12- Cite sources using [1], [2], etc.
13- Be concise and accurate
14
15Answer:"""
16

PSYC 51.07: Models of Language and Communication

Week 9 21

Prompt Engineering for RAG

21
22question = "When was the Eiffel Tower built?"
23
24response = llm.generate(RAG_PROMPT.format(context=context, question=question))
25# "The Eiffel Tower was completed in 1889 for the World's Fair [1]."

...continued
Key Elements

1. Explicit grounding instruction, 2. Source citation format, 3. Fallback for missing info

PSYC 51.07: Models of Language and Communication

Week 9 22

Production Challenges

Performance Challenges:

Cost: Embedding generation + storage + inference

Latency: Retrieval adds 50-200ms

Context limits: LLM window size

Quality: Retrieval accuracy

Freshness: Keeping index up-to-date

Solutions:

Cache embeddings

Semantic caching (similar queries)

Incremental indexing

Re ranking pipelines

PSYC 51.07: Models of Language and Communication

Week 9 23

Evaluation Metrics for RAG

How to measure RAG quality:

Retrieval Quality:

Recall@k: Are relevant docs in top-k?

MRR (Mean Reciprocal Rank): Where is first relevant doc?

NDCG (Normalized Discounted Cumulative Gain): Ranked quality

Generation Quality:

Factual accuracy: Are answers correct?

Faithfulness: Does answer match retrieved docs?

Relevance: Does answer address the question?

Citation quality: Are sources correctly attributed?

PSYC 51.07: Models of Language and Communication

Week 9 24

Common RAG Failure Modes

1. Retrieval Failures

Wrong documents retrieved

Relevant docs not in knowledge base

Poor query formulation

2. Context Problems
Too much irrelevant context

Context too long for LLM

Important info not in retrieved chunks

3. Generation Issues
Ignores retrieved context

Hallucinates despite good context

PSYC 51.07: Models of Language and Communication

Week 9 25

Multimodal RAG

Beyond text: Retrieving images, tables, code, etc.

Vision + Text

Use CLIP embeddings for images

Retrieve relevant diagrams, charts

Generate answers referencing visual content

\item Code Retrieval

Embed code snippets

Retrieve relevant functions/examples

Code completion and debugging

\item Structured Data

PSYC 51.07: Models of Language and Communication

Week 9 26

Graph-Based RAG

Combining knowledge graphs with RAG:

Traditional RAG: Flat document chunks

Graph RAG: Documents + relationships

Advantages:

Capture entity relationships

Multi-hop reasoning (A → B → C)

Better for complex queries

Explicit knowledge structure

Implementation:

1. Extract entities and relations from documents

PSYC 51.07: Models of Language and Communication

Week 9 27

HyDE: Hypothetical Document Embeddings

Clever trick: Generate a hypothetical answer first, then retrieve!

1# Standard RAG: Query -> Retrieve -> Generate
2query = "What causes the aurora borealis?"
3# Direct embedding may not match scientific docs well
4
5# HyDE: Query -> Generate Hypothesis -> Embed Hypothesis -> Retrieve -> Generat
6hypothesis = llm.generate(f"Write a short explanation: {query}")
7# "The aurora borealis occurs when charged particles from the sun
8# interact with gases in Earth's atmosphere, causing them to glow."
9
10# Now embed the HYPOTHESIS (an answer-like text)
11hypo_embedding = embed(hypothesis)
12docs = vector_db.search(hypo_embedding) # Better match to scientific docs!
13
14# Finally generate with real retrieved docs
15final_answer = llm.generate(query, context=docs)

PSYC 51.07: Models of Language and Communication

Week 9 28

RAG vs Fine-Tuning

When should you use RAG vs fine-tuning your model?

Use RAG when:

 Knowledge changes frequently

 Need citations/provenance

 Privacy concerns (data in DB, not weights)

 Large knowledge base

 Multi-domain applications

 Want to update without retraining

Use Fine-Tuning when:

 Need specific style/behavior

PSYC 51.07: Models of Language and Communication

Week 9 29

Future of RAG

Emerging trends and research directions:

1. Agentic RAG
LLM decides retrieval strategy

Multi-step reasoning with retrieval

Tool use (web search, APIs, databases)

2. Long-context RAG

Models with 1M+ token windows

Entire books as context

Retrieval still useful for efficiency

3. Personalized RAG

User-specific knowledge bases

PSYC 51.07: Models of Language and Communication

Week 9 30

Key Takeaways

1. RAG solves fundamental LLM limitations

Knowledge cutoff, hallucination, no citations

2. Core pipeline: Retrieve → Augment → Generate
Vector search for relevant documents

Incorporate into prompt

3. Many variants exist

Naive RAG → Self-RAG → Corrective RAG → Agentic RAG

4. Key components matter

Chunking strategy, embedding model, vector DB

5. Production requires careful engineering
Latency, cost, quality evaluation

6 RAG Fi t i i f l b

PSYC 51.07: Models of Language and Communication

Week 9 31

Readings

Required:

1. Lewis et al. (2020): Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks

[arXiv]

2. Asai et al. (2023): Self-RAG: Learning to Retrieve, Generate, and Critique
[arXiv]

Recommended:

Yan et al. (2024): Corrective RAG [arXiv]

Gao et al. (2022): Precise Zero-Shot Dense Retrieval (HyDE) [arXiv]

HuggingFace RAG Tutorial [Tutorial]

LangChain RAG Docs [Docs]

PSYC 51.07: Models of Language and Communication

Week 9 32

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2401.15884
https://arxiv.org/abs/2212.10496
https://huggingface.co/learn/cookbook/advanced_rag
https://python.langchain.com/docs/use_cases/question_answering/

Questions?

Next: Mixture of Experts!

PSYC 51.07: Models of Language and Communication

Week 9 33

