PSYC 51.07: Models of Language and Communication

Lecture 24: Retrieval Augmented Generation

Grounding LLMs in External Knowledge ©,

PSYC 51.07: Models of Language and Communication
Week 9

Week 9

PSYC 51.07: Models of Language and Communication

Today's Journey ¥4

What we'll cover

Week 9

1. The Problem: Why parametric memory isn't enough
2.RAG Basics: Retrieve, Augment, Generate

3. Implementation: Building RAG systems step-by-step

4. Advanced Techniques: Self-RAG, Corrective RAG, HyDE
5. Production Challenges: Making RAG work in the real world

PSYC 51.07: Models of Language and Communication

The Limits of Parametric Memory “

What are the fundamental limitations of storing knowledge in model parameters?
Problems with purely parametric models:

« X Knowledge cutoff: No information after training date

« X Hallucinations: Models confidently generate false information

e X No source attribution: Can't cite where information comes from
« X Expensive updates: Retraining for new information costs millions
« X Privacy concerns: Sensitive data baked into parameters

« X Domain specificity: Limited knowledge of specialized domains

« X Outdated facts: World changes but model weights don't

weer S0OlUtion: Combine parametric knowledge with non-parametric retrieval! Q,

PSYC 51.07: Models of Language and Communication

Example: Knowledge Cutoff Problem
User Query (Dec 2024)

"Who won the 2024 US Presidential election?"

Parametric-only LLM:

{ X} "l apologize, but my knowledge was last updated in April 2023, so | cannot tell you
about the 2024 election results."

Or worse: Hallucinates an answer!
RAG-enhanced LLM:

{2} "According to CNN (retrieved Nov 6, 2024), [actual winner] won the 2024 US
Presidential election with [details]."

week Provides: Fresh info + source!

PSYC 51.07: Models of Language and Communication

Retrieval Augmented Generation: Definition &

RAG (Lewis et al., 2020)
A technique that enhances LLMs by retrieving relevant documents from an external

knowledge base and using them to inform generation.

Core Idea: Instead of relying only on learned parameters, the model can "look things up"!

Traditional LLM:

e Question - Model = Answer
e Only parametric knowledge
e Fixed at training time

e No sources

RAG Pipeline:

Week 9

V= s ® -~ ™S ' L] ™s

PSYC 51.07: Models of Language and Communication

RAG Architecture £

User Query] — [

Embed Query] — [Vector Search J —

Retrieve Docs — [Augment Prompt] — [LLM Genera te] — [Response]

Worked Example: "What causes the Northern Lights?"

Week 9

Step
1.Embed
2.Search
3. Retrieve
4. Augment

5. Generate

Action

Convert query to vector

Result

[0.12, -0.45, 0.78, ...] (384dims)

Find similar vectors in DB Top-3 docs: scores 0.92,0.87,0.85

Get actual text chunks
Add context to prompt

LLM produces answer

"Aurora borealis occurs when..."
System + Context + Query

Grounded response with citations

PSYC 51.07: Models of Language and Communication

RAG: Step-by-Step Walkthrough ©,

Query: "What is the capital of Kazakhstan?"

1# Step 1: Embed the query

2query = "What is the capital of Kazakhstan?"

3query_embedding = embedding_model.encode(query)

4# Result: numpy array of shape (384,)

5

6# Step 2: Search vector database

7results = vector_db.search(query_embedding, top_k=3)

8# Returns: |

O# {"text": "Astana is the capital of Kazakhstan...", "score": 0.94},

10# {"text": "Kazakhstan's capital moved from Almaty...", '"score": 0.89},
11# {"text": "The city was renamed Nur-Sultan in 2019...", '"score": 0.85}

12#]
13
14# Step 3: Build augmented prompt
week 9 15context = "\n".join([r["text"] for r in results])

1oprompt = f"""Answer based on the context below.

PSYC 51.07: Models of Language and Communication

RAG: Step-by-Step Walkthrough ©,

21# Step 4: Generate with LLM
22response = llm.generate(prompt)
23# "Astana (previously known as Nur-Sultan) is the capital of Kazakhstan."

...continued

Week 9

PSYC 51.07: Models of Language and Communication

RAG Components Deep Dive

1. Document Processing

1# Chunking example
2from langchain.text_splitter import RecursiveCharacterTextSplitter

3

4splitter = RecursiveCharacterTextSplitter(

5 chunk_size=500, # Target size

6 chunk_overlap=50, # Overlap between chunks
7 Separat0r5=[”\n\n", Il\nll’ II. II’ 11 II]

8)

9

10chunks = splitter.split_text(long_document)
11# ["First chunk about topic A...",

12# "Second chunk continues topic A...",

13# "Third chunk about topic B..."]

"2 Embedding & Storage

PSYC 51.07: Models of Language and Communication

RAG Implementation Example

Basic RAG with LangChain:

1from
2T rom
3from
4from
5from
6from
7

8# 1.

langchain.vectorstores import Chroma

langchain.embeddings import HuggingFaceEmbeddings
langchain. Llms import HuggingFacePipeline

langchain.chains import RetrievalQA
langchain.document_loaders import TextlLoader
langchain.text_splitter import RecursiveCharacterTextSplitter

Load and chunk documents

9loader = TextLoader('knowledge_base.txt')
10documents = loader. load()

11

12text_splitter = RecursiveCharacterTextSplitter(

13
14
Week 9 15)

chunk_size=512,
chunk_overlap=50

16chunks = text splitter.split documents(documents)

10

PSYC 51.07: Models of Language and Communication

RAG Implementation Example

21)

22vectordb = Chroma.from_documents (
23 documents=chunks,

24 embedding=embeddings,

25 persist_directory="./chroma_db"
26)

27

28# 3. Set up retriever
29retriever = vectordb.as_retriever(

30 search_type="similarity",
31 search_kwargs={"k": 3} # Retrieve top 3 chunks
32)

...continued

Week 9

PSYC 51.07: Models of Language and Communication

RAG Implementation (cont.)

1# 4. Create LLM
21lm = HuggingFacePipeline.from_model_id(
3 model_id="meta-1llama/Llama-2-7b-chat-hf",

4 task="text—-generation",

5 model_kwargs={"temperature": 0.7, "max_length": 512}
6)

7

8# 5. Create RAG chain
9ga_chain = RetrievalQA. from_chain_type(
10 Ilm=11m,

11 retriever=retriever,
12 return_source_documents=True,
13 chain_type="stuff" # How to combine documents
14)
15
16# 6. Query the system
weeko 17query = "What is retrieval augmented generation?"

18result = ga chain({"query": query})

PSYC 51.07: Models of Language and Communication

RAG Implementation (cont.) =

21print("\nSources:")
22for doc in result|['source_documents']:
23 print(f"- {doc.metadatal'source']}: {doc.page_content[:100]}...")

...continued
Tutorial: HuggingFace Advanced RAG -
https://huggingface.co/learn/cookbook/advanced_rag

Week 9

13

https://huggingface.co/learn/cookbook/advanced_rag

PSYC 51.07: Models of Language and Communication

Evolution of RAG Approaches

[Naive RAG J — [Self-RAG J — Corrective RAG — [Agentic RAG
Approach Key Innovation When to Retrieve
Naive RAG Always retrieve Every query
Self-RAG Model decides Only when needed
Corrective RAG Verify relevance Always, but filter
Agentic RAG Multi-step reasoning Tool-based decisions
Trend

Moving from always-retrieve to adaptive, self-correcting retrieval systems!

Week 9

14

PSYC 51.07: Models of Language and Communication

We

Self-RAG: Adaptive Retrieval @

Key Innovation: Model decides when to retrieve
Special Tokens Learned:

e [Retrieve] - Need externalinfo?
e [Relevant] - Isretrieved doc useful?
e [Support] - Does doc support answer?

e [Useful] -Isanswer helpful?

Worked Example:

1Q: What's 2+27?

2[Retrieve: No] # No retrieval needed
ek93A: 4

4

15

PSYC 51.07: Models of Language and Communication

Corrective RAG (CRAG) *v

Problem: Sometimes retrieved documents are irrelevant or misleading!

[Query J —> [Retrieve J —> { Evaluate Relevance J —_— —> Generate

—_——> [Filter & Refine] > [Generate]

_—— [Web Search]% [Generate]

Worked Example:

1# Query: "Latest COVID vaccine recommendations"
2retrieved_docs = retriever.search(query) # Returns old 2021 docs

3

week 9 4# Evaluator scores relevance
Eccorecs = evaluator <score(aiierv. retrieved docc)

16

PSYC 51.07: Models of Language and Communication

Comparing RAG Approaches il

Approach When Retrieve Filtering Latency Best For
Naive RAG Always None Low Simple Q&A
Self-RAG Model decides Self-reflection Medium Adaptive needs
Corrective RAG Always + verify Relevance scoring High High precision
HyDE Via hypothesis Similarity Medium Complex queries
Agentic RAG Tool-based Multi-step Highest Complex workflows

Trade-offs Example:

1Simple FAQ bot - Naive RAG (fast, cheap)
2Medical diagnosis assistant - Corrective RAG (accuracy critical) 17

VeeY 3Research assistant - Agentic RAG (multi-step reasoning needed)

PSYC 51.07: Models of Language and Communication

Chunking Strategies

How you split documents dramatically affects retrieval quality!

Fixed-size (Simple)

1# Split every 500 chars
2chunks = [text[i:i+500]
3 for 1 in range(@, len(text), 500)]

4# Problem: "The mitochondria is the power-"
5# "house of the cell." <- split mid-sentence!

Recursive (Better)

1splitter = RecursiveCharacterTextSplitter(

2 Separat0r5=["\n\n", u\nn’ n. u’ 1] n]’
Week 9 3 chunk_size=500

4)

18

PSYC 51.07: Models of Language and Communication

Embedding Models for Retrieval @

Choosing the Right Embedding Model:

Model Dims Size Speed Quality
all-MiniLM-L6-v2 384 90MB Fast Good
BGE-large-en 1024 1.3GB Medium Excellent

OpenAl text-embedding-3-small 1536 API Fast Excellent

Code Example: Dense vs Hybrid Retrieval

1# Dense retrieval (semantic similarity)

2from sentence_transformers import SentenceTransformer
3model = SentenceTransformer('all-MinilLM-L6-v2")
4query_vec = model.encode("What causes headaches?")

W%*9§# Finds: "Migraines are often triggered by..." (semantically similar)

19

PSYC 51.07: Models of Language and Communication

Vector Databases B

Purpose: Fast similarity search over millions of embeddings

Quick Start with ChromaDB:

limport chromadb

2

3# Create client and collection

4client = chromadb.Client()

5collection = client.create_collection("my_docs")

6
7# Add documents (auto—embeds!)
8collection.add(
9 documents=["Paris is in France",
10 "Berlin is in Germany"],
11 ids=["docl1l", "doc2"]
12)
Week 9 13

14# Ouerv

20

PSYC 51.07: Models of Language and Communication

Prompt Engineering for RAG =~

Template for Grounded Generation:

1RAG_PROMPT = """You are a helpful assistant. Answer the question based ONLY on
2the context provided below. If the answer is not in the context, say
3"I don't have that information."
4
5Context:
6{context}
7
8Question: {question}
9
10Instructions:
11- Use only information from the context above
12— Cite sources using [1], [2], etc.
13- Be concise and accurate
14
Week 9 15Answer: """ 21
16

PSYC 51.07: Models of Language and Communication

Prompt Engineering for RAG =/

21
22question
23
24response = llm.generate(RAG_PROMPT.format(context=context, question=question))
25# "The Eiffel Tower was completed in 1889 for the World's Fair [1]."

"When was the Eiffel Tower built?"

...continued
Key Elements
1. Explicit grounding instruction, 2. Source citation format, 3. Fallback for missing info

Week 9 22

PSYC 51.07: Models of Language and Communication

Production Challenges &

Performance Challenges:

e 5 Cost: Embedding generation + storage + inference
o Latency: Retrieval adds 50-200ms

o ", Context limits: LLM window size

e @ Quality: Retrieval accuracy

° Freshness: Keeping index up-to-date

Solutions:

e Cache embeddings
e Semantic caching (similar queries)

weer o ® Incremental indexing

. . Io
™ - o . o e

23

PSYC 51.07: Models of Language and Communication

Evaluation Metrics for RAG il

How to measure RAG quality:
Retrieval Quality:

o Recall@k: Are relevant docs in top-k?
e MRR (Mean Reciprocal Rank): Where is first relevant doc?

e NDCG (Normalized Discounted Cumulative Gain): Ranked quality
Generation Quality:

e Factual accuracy: Are answers correct?
o Faithfulness: Does answer match retrieved docs?
o Relevance: Does answer address the question?

week o © Citation quality: Are sources correctly attributed?

24

PSYC 51.07: Models of Language and Communication

Common RAG Failure Modes

Week 9

1. Retrieval Failures
o Wrong documents retrieved

e Relevant docs not in knowledge base

e Poor query formulation

2. Context Problems
o Too much irrelevant context

Context too long for LLM

e Important info not in retrieved chunks

3. Generation Issues
o |gnores retrieved context

o LlalliirnimAatAac AAaeanrnidfA AAa~nA AARFAVE

25

PSYC 51.07: Models of Language and Communication

Multimodal RAG E&

Beyond text: Retrieving images, tables, code, etc.

e Vision + Text

o Use CLIP embeddings for images

Retrieve relevant diagrams, charts
o Generate answers referencing visual content
\item Code Retrieval
o Embed code snippets
o Retrieve relevant functions/examples

s Code completion and debugging

| LT Y - Y T T B . U

26

PSYC 51.07: Models of Language and Communication

Graph-Based RAG &

Combining knowledge graphs with RAG:
Traditional RAG: Flat document chunks
Graph RAG: Documents + relationships
Advantages:

o Capture entity relationships

e Multi-hop reasoning (A > B = C)
o Better for complex queries

o Explicit knowledge structure

Implementation:

Y91 Extract entities and relations from documents

27

PSYC 51.07: Models of Language and Communication

HyDE: Hypothetical Document Embeddings

Clever trick: Generate a hypothetical answer first, then retrieve!

1# Standard RAG: Query —> Retrieve —> Generate

2query = "What causes the aurora borealis?"
3# Direct embedding may not match scientific docs well
4

5# HyDE: Query —> Generate Hypothesis —> Embed Hypothesis —> Retrieve —> Generat
6hypothesis = 1lm.generate(f"Write a short explanation: {query}")
7# "The aurora borealis occurs when charged particles from the sun
8# 1nteract with gases in Earth's atmosphere, causing them to glow."
9
10# Now embed the HYPOTHESIS (an answer-like text)
11hypo_embedding = embed(hypothesis)
12docs = vector_db.search(hypo_embedding) # Better match to scientific docs!
13
14# Finally generate with real retrieved docs
weeko 15final_answer = 1lm.generate(query, context=docs) 28

PSYC 51.07: Models of Language and Communication

RAG vs Fine-Tuning &

When should you use RAG vs fine-tuning your model?
Use RAG when:

. Knowledge changes frequently

. Need citations/provenance

o 4 Privacy concerns (data in DB, not weights)
e [/ Large knowledge base

e 4 Multi-domain applications

o [¥2 Want to update without retraining

Use Fine-Tuning when:

weeko o 4 Need specific style/behavior

29

PSYC 51.07: Models of Language and Communication

Future of RAG &

Emerging trends and research directions:

1. Agentic RAG
o LLM decides retrieval strategy

o Multi-step reasoning with retrieval

e Tool use (web search, APls, databases)

2.Long-context RAG
o Models with TM+ token windows

e Entire books as context

o Retrieval still useful for efficiency

week o 3. Personalized RAG

~ llear anA~tfirn LnAawvv/dadAaAna KkacAae

30

PSYC 51.07: Models of Language and Communication

Key Takeaways /#

1. RAG solves fundamental LLM limitations
o Knowledge cutoff, hallucination, no citations

2.Core pipeline: Retrieve > Augment - Generate
o Vector search for relevant documents
e |ncorporate into prompt
3. Many variants exist
o Naive RAG - Self-RAG - Corrective RAG - Agentic RAG

4. Key components matter
o Chunking strategy, embedding model, vector DB

5. Production requires careful engineering
Week 9 o Latency, cost, quality evaluation

. s BB . o P P -

31

PSYC 51.07: Models of Language and Communication

Readings LJ

Required:

1. Lewis et al. (2020): Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks

[arXiv]
2. Asai et al. (2023): Self-RAG: Learning to Retrieve, Generate, and Critique
[arXiv]

Recommended:

e Yan et al. (2024): Corrective RAG [arXiv]
e Gaoetal. (2022): Precise Zero-Shot Dense Retrieval (HyDE) [arXiv]
e HuggingFace RAG Tutorial [Tutorial]

Week 9

e LangChain RAG Docs [Docs]

32

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2401.15884
https://arxiv.org/abs/2212.10496
https://huggingface.co/learn/cookbook/advanced_rag
https://python.langchain.com/docs/use_cases/question_answering/

PSYC 51.07: Models of Language and Communication

Questions?

Next: Mixture of Experts!

Week 9

33

