
Lecture 23: Implementing GPT from Scratch

Building a Language Model in PyTorch

Models of Language and Conversation

Week 7

Models of Language and Conversation

Week 7 1

Today's Journey

Models of Language and Conversation

Week 7 2

What We'll Build Today

<div class="callout warning">

Goal

Implement a simplified GPT model from scratch in PyTorch!

Components we'll cover:
1. Tokenization (Byte-Pair Encoding)

2. Embeddings (token + position)

3. Masked Multi-Head Attention

4. Transformer Decoder Block

5. Language Model Head

6 Training Loop

Models of Language and Conversation

Week 7 3

Required Libraries

1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4from torch.utils.data import Dataset, DataLoader
5import numpy as np
6import tiktoken # OpenAI's BPE tokenizer
7
8# Check for GPU
9device = 'cuda' if torch.cuda.is_available() else 'cpu'
10print(f"Using device: {device}")
11
12# Hyperparameters
13config = {
14 'vocab_size': 50257, # GPT-2 vocabulary size
15 'd_model': 384, # Embedding dimension
16 'n_layers': 6, # Number of transformer blocks
17 'n_heads': 6, # Number of attention heads
18 'max_seq_len': 256, # Maximum sequence length

Models of Language and Conversation

Week 7 4

Required Libraries

21 'learning_rate': 3e-4,
22 'num_epochs': 10
23}

...continued

Install: pip install torch tiktoken

Models of Language and Conversation

Week 7 5

What is Tokenization?

<div class="callout info">

Tokenization

Converting text into a sequence of integer IDs that the model can process.

Common strategies:
1. **Word-level**: Split on spaces
 - Huge vocabulary, can't handle unknown words

2. Character-level: Individual characters

- Very long sequences, loses word structure

3. Subword-level (BPE): Best of both worlds!
- Frequent words: one token

Rare words: multiple subword tokens

Models of Language and Conversation

Week 7 6

Byte-Pair Encoding (BPE)

How BPE works:

1. Start with characters as base vocabulary

2. Find most frequent pair of adjacent tokens

3. Merge this pair into a new token

4. Repeat until desired vocabulary size

Example

 Text: "low low low lower lower newest newest"

Iterations:

Models of Language and Conversation

Week 7 7

BPE Tokenization in Code

1import tiktoken
2
3# Load GPT-2 tokenizer (uses BPE)
4tokenizer = tiktoken.get_encoding("gpt2")
5
6# Example text
7text = "Hello, how are you doing today?"
8
9# Encode: text -> token IDs
10tokens = tokenizer.encode(text)
11print("Tokens:", tokens)
12# Output: [15496, 11, 703, 389, 345, 1804, 1909, 30]
13
14# Decode: token IDs -> text
15decoded = tokenizer.decode(tokens)
16print("Decoded:", decoded)
17# Output: "Hello, how are you doing today?"
18

Models of Language and Conversation

Week 7 8

BPE Tokenization in Code

21 token_str = tokenizer.decode([token_id])
22 print(f"{token_id}: '{token_str}'")
23
24# Vocabulary size
25print(f"Vocab size: {tokenizer.n_vocab}") # 50257

...continued

Models of Language and Conversation

Week 7 9

Creating a Text Dataset

1class TextDataset(Dataset):
2 def __init__(self, text_file, tokenizer, max_seq_len):
3 # Load text
4 with open(text_file, 'r', encoding='utf-8') as f:
5 text = f.read()
6
7 # Tokenize entire text
8 self.tokens = tokenizer.encode(text)
9 self.max_seq_len = max_seq_len
10
11 def __len__(self):
12 # Number of sequences we can extract
13 return len(self.tokens) - self.max_seq_len
14
15 def __getitem__(self, idx):
16 # Get sequence of length max_seq_len + 1
17 # (we need +1 for the target)
18 chunk = self.tokens[idx:idx + self.max_seq_len + 1]

Models of Language and Conversation

Week 7 10

Creating a Text Dataset

21 x = torch.tensor(chunk[:-1], dtype=torch.long)
22 # Target: all but first token
23 y = torch.tensor(chunk[1:], dtype=torch.long)
24
25 return x, y
26
27# Usage
28dataset = TextDataset('shakespeare.txt', tokenizer, config['max_seq_len'])
29dataloader = DataLoader(dataset, batch_size=config['batch_size'], shuffle=True

...continued

Models of Language and Conversation

Week 7 11

Token and Position Embeddings

1class Embeddings(nn.Module):
2 def __init__(self, vocab_size, d_model, max_seq_len, dropout):
3 super().__init__()
4 # Token embeddings: map token IDs to vectors
5 self.token_embed = nn.Embedding(vocab_size, d_model)
6
7 # Position embeddings: encode position information
8 self.pos_embed = nn.Embedding(max_seq_len, d_model)
9
10 self.dropout = nn.Dropout(dropout)
11 self.d_model = d_model
12
13 def forward(self, x):
14 # x shape: (batch_size, seq_len)
15 seq_len = x.size(1)
16
17 # Token embeddings
18 tok_emb = self.token_embed(x) # (batch, seq_len, d_model)

Models of Language and Conversation

Week 7 12

Token and Position Embeddings

21 positions = torch.arange(0, seq_len, device=x.device)
22 pos_emb = self.pos_embed(positions) # (seq_len, d_model)
23
24 # Combine (broadcasting handles batch dimension)
25 embeddings = tok_emb + pos_emb
26
27 return self.dropout(embeddings)

...continued

Models of Language and Conversation

Week 7 13

Masked Multi-Head Attention

1class MultiHeadAttention(nn.Module):
2 def __init__(self, d_model, n_heads, dropout):
3 super().__init__()
4 assert d_model % n_heads == 0
5
6 self.d_model = d_model
7 self.n_heads = n_heads
8 self.head_dim = d_model // n_heads
9
10 # Linear layers for Q, K, V
11 self.q_linear = nn.Linear(d_model, d_model)
12 self.k_linear = nn.Linear(d_model, d_model)
13 self.v_linear = nn.Linear(d_model, d_model)
14
15 # Output projection
16 self.out_linear = nn.Linear(d_model, d_model)
17 self.dropout = nn.Dropout(dropout)
18

Models of Language and Conversation

Week 7 14

Masked Multi-Head Attention

21
22 # Linear projections and split into heads
23 Q = self.q_linear(x).view(batch_size, seq_len, self.n_heads, self.head
24 K = self.k_linear(x).view(batch_size, seq_len, self.n_heads, self.head
25 V = self.v_linear(x).view(batch_size, seq_len, self.n_heads, self.head
26
27 # Transpose for attention: (batch, n_heads, seq_len, head_dim)
28 Q = Q.transpose(1, 2)
29 K = K.transpose(1, 2)
30 V = V.transpose(1, 2)

...continued

Models of Language and Conversation

Week 7 15

Attention Computation (cont.)

1# Scaled dot-product attention
2 # Scores: (batch, n_heads, seq_len, seq_len)
3 scores = torch.matmul(Q, K.transpose(-2, -1)) / np.sqrt(self.head_dim)
4
5 # Apply causal mask (prevent attending to future tokens)
6 if mask is not None:
7 scores = scores.masked_fill(mask == 0, float('-inf'))
8
9 # Softmax to get attention weights
10 attn_weights = F.softmax(scores, dim=-1)
11 attn_weights = self.dropout(attn_weights)
12
13 # Apply attention to values
14 # Output: (batch, n_heads, seq_len, head_dim)
15 attn_output = torch.matmul(attn_weights, V)
16
17 # Concatenate heads
18 attn_output = attn_output.transpose(1, 2).contiguous()

Models of Language and Conversation

Week 7 16

Attention Computation (cont.)

21 # Final linear projection
22 output = self.out_linear(attn_output)
23
24 return output

...continued

Models of Language and Conversation

Week 7 17

Creating the Causal Mask

1def create_causal_mask(seq_len, device):
2 """
3 Create a causal (lower-triangular) mask for autoregressive generation.
4
5 Returns:
6 mask: (seq_len, seq_len) with 1s on and below diagonal, 0s above
7 """
8 mask = torch.tril(torch.ones(seq_len, seq_len, device=device))
9 return mask # Shape: (seq_len, seq_len)
10
11# Example: 5x5 causal mask
12mask = create_causal_mask(5, 'cpu')
13print(mask)
14# tensor([[1., 0., 0., 0., 0.],
15# [1., 1., 0., 0., 0.],
16# [1., 1., 1., 0., 0.],
17# [1., 1., 1., 1., 0.],
18# [1., 1., 1., 1., 1.]])

Models of Language and Conversation

Week 7 18

Feed-Forward Network

1class FeedForward(nn.Module):
2 def __init__(self, d_model, dropout):
3 super().__init__()
4 # GPT uses 4 * d_model as the hidden dimension
5 self.net = nn.Sequential(
6 nn.Linear(d_model, 4 * d_model),
7 nn.GELU(), # GPT uses GELU activation
8 nn.Linear(4 * d_model, d_model),
9 nn.Dropout(dropout)
10)
11
12 def forward(self, x):
13 return self.net(x)

Why GELU (Gaussian Error Linear Unit)?

Smooth, non-monotonic activation

Models of Language and Conversation

Week 7 19

Transformer Decoder Block

1class TransformerBlock(nn.Module):
2 def __init__(self, d_model, n_heads, dropout):
3 super().__init__()
4 self.attention = MultiHeadAttention(d_model, n_heads, dropout)
5 self.feed_forward = FeedForward(d_model, dropout)
6
7 # Layer normalization (applied before sub-layers in GPT)
8 self.ln1 = nn.LayerNorm(d_model)
9 self.ln2 = nn.LayerNorm(d_model)
10
11 def forward(self, x, mask):
12 # Pre-norm architecture (used in GPT)
13 # Attention with residual connection
14 x = x + self.attention(self.ln1(x), mask)
15
16 # Feed-forward with residual connection
17 x = x + self.feed_forward(self.ln2(x))
18

Models of Language and Conversation

Week 7 20

Complete GPT Model

1class GPT(nn.Module):
2 def __init__(self, vocab_size, d_model, n_layers, n_heads, max_seq_len, dro
3 super().__init__()
4 self.max_seq_len = max_seq_len
5
6 # Embeddings
7 self.embeddings = Embeddings(vocab_size, d_model, max_seq_len, dropout)
8
9 # Transformer blocks
10 self.blocks = nn.ModuleList([
11 TransformerBlock(d_model, n_heads, dropout)
12 for _ in range(n_layers)
13])
14
15 # Final layer norm
16 self.ln_f = nn.LayerNorm(d_model)
17
18 # Language model head (projects to vocabulary)

Models of Language and Conversation

Week 7 21

Complete GPT Model

21 # Initialize weights
22 self.apply(self._init_weights)
23
24 def _init_weights(self, module):
25 if isinstance(module, nn.Linear):
26 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
27 if module.bias is not None:
28 torch.nn.init.zeros_(module.bias)
29 elif isinstance(module, nn.Embedding):
30 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

...continued

Models of Language and Conversation

Week 7 22

GPT Forward Pass

1def forward(self, x, targets=None):
2 # x shape: (batch_size, seq_len)
3 seq_len = x.size(1)
4
5 # Create causal mask
6 mask = create_causal_mask(seq_len, x.device)
7
8 # Embeddings
9 x = self.embeddings(x) # (batch, seq_len, d_model)
10
11 # Apply transformer blocks
12 for block in self.blocks:
13 x = block(x, mask)
14
15 # Final layer norm
16 x = self.ln_f(x)
17
18 # Project to vocabulary

Models of Language and Conversation

Week 7 23

GPT Forward Pass

21 # Compute loss if targets provided
22 loss = None
23 if targets is not None:
24 # Flatten for cross-entropy
25 loss = F.cross_entropy(
26 logits.view(-1, logits.size(-1)),
27 targets.view(-1)
28)
29
30 return logits, loss

...continued

Models of Language and Conversation

Week 7 24

Training Loop

1# Initialize model
2model = GPT(
3 vocab_size=config['vocab_size'],
4 d_model=config['d_model'],
5 n_layers=config['n_layers'],
6 n_heads=config['n_heads'],
7 max_seq_len=config['max_seq_len'],
8 dropout=config['dropout']
9).to(device)
10
11# Optimizer (AdamW is used for GPT)
12optimizer = torch.optim.AdamW(
13 model.parameters(),
14 lr=config['learning_rate'],
15 betas=(0.9, 0.95),
16 weight_decay=0.1
17)
18

Models of Language and Conversation

Week 7 25

Training Loop

21for epoch in range(config['num_epochs']):
22 total_loss = 0
23 for batch_idx, (x, y) in enumerate(dataloader):
24 x, y = x.to(device), y.to(device)
25
26 # Forward pass
27 logits, loss = model(x, targets=y)
28
29 # Backward pass
30 optimizer.zero_grad()
31 loss.backward()
32 torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
33 optimizer.step()
34
35 total_loss += loss.item()
36
37 avg_loss = total_loss / len(dataloader)
38 print(f"Epoch {epoch+1}/{config['num_epochs']}, Loss: {avg_loss:.4f}")

Models of Language and Conversation

Week 7 26

Training Tips

Best practices for training GPT:

1. **Gradient clipping**
 - Prevents exploding gradients

Clip to max norm of 1.0

2. Learning rate schedule
- Warmup for first few thousand steps

Cosine decay afterwards

3. AdamW optimizer

- Adam with decoupled weight decay

Models of Language and Conversation

Week 7 27

Greedy Decoding

1@torch.no_grad()
2def generate_greedy(model, tokenizer, prompt, max_new_tokens=50):
3 model.eval()
4
5 # Encode prompt
6 tokens = tokenizer.encode(prompt)
7 x = torch.tensor([tokens], dtype=torch.long, device=device)
8
9 for _ in range(max_new_tokens):
10 # Get predictions (crop to max_seq_len if needed)
11 x_crop = x[:, -model.max_seq_len:]
12 logits, _ = model(x_crop)
13
14 # Focus on last token's predictions
15 logits = logits[:, -1, :] # (batch, vocab_size)
16
17 # Get token with highest probability
18 next_token = torch.argmax(logits, dim=-1, keepdim=True)

Models of Language and Conversation

Week 7 28

Greedy Decoding

21 x = torch.cat([x, next_token], dim=1)
22
23 # Stop if we generate end-of-sequence token
24 if next_token.item() == tokenizer.eot_token:
25 break
26
27 # Decode and return
28 generated_text = tokenizer.decode(x[0].tolist())
29 return generated_text
30
31# Example usage
32prompt = "Once upon a time"
33generated = generate_greedy(model, tokenizer, prompt, max_new_tokens=100)
34print(generated)

...continued

Models of Language and Conversation

Week 7 29

Sampling Strategies

Different ways to sample next token:

1. **Greedy Decoding**
 - Always pick most likely token

 Deterministic, fast

 Repetitive, boring

2. Temperature Sampling
- Scale logits by temperature

: More conservative (peaked distribution)

: More random (flat distribution)

Models of Language and Conversation

Week 7 30

Top-k and Nucleus Sampling

1def sample_next_token(logits, temperature=1.0, top_k=None, top_p=None):
2 """
3 Sample next token from logits with various strategies.
4
5 Args:
6 logits: (vocab_size,) unnormalized log probabilities
7 temperature: Temperature for sampling
8 top_k: If set, only sample from top k tokens
9 top_p: If set, only sample from nucleus (top-p)
10 """
11 # Apply temperature
12 logits = logits / temperature
13
14 # Top-k filtering
15 if top_k is not None:
16 top_k = min(top_k, logits.size(-1))
17 indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, Non
18 logits[indices_to_remove] = float('-inf')

Models of Language and Conversation

Week 7 31

Top-k and Nucleus Sampling

21 if top_p is not None:
22 sorted_logits, sorted_indices = torch.sort(logits, descending=True)
23 cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=
24
25 # Remove tokens with cumulative probability above threshold
26 sorted_indices_to_remove = cumulative_probs > top_p
27 sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1]
28 sorted_indices_to_remove[..., 0] = 0
29
30 indices_to_remove = sorted_indices[sorted_indices_to_remove]
31 logits[indices_to_remove] = float('-inf')
32
33 # Sample from distribution
34 probs = F.softmax(logits, dim=-1)
35 next_token = torch.multinomial(probs, num_samples=1)
36
37 return next_token

Models of Language and Conversation

Week 7 32

Complete Generation Function

1@torch.no_grad()
2def generate(model, tokenizer, prompt, max_new_tokens=100,
3 temperature=1.0, top_k=40, top_p=0.9):
4 model.eval()
5
6 tokens = tokenizer.encode(prompt)
7 x = torch.tensor([tokens], dtype=torch.long, device=device)
8
9 for _ in range(max_new_tokens):
10 x_crop = x[:, -model.max_seq_len:]
11 logits, _ = model(x_crop)
12 logits = logits[:, -1, :] # Last token
13
14 # Sample next token
15 next_token = sample_next_token(
16 logits[0],
17 temperature=temperature,
18 top_k=top_k,

Models of Language and Conversation

Week 7 33

Complete Generation Function

21
22 x = torch.cat([x, next_token.unsqueeze(0)], dim=1)
23
24 if next_token.item() == tokenizer.eot_token:
25 break
26
27 return tokenizer.decode(x[0].tolist())
28
29# Creative generation
30text = generate(model, tokenizer, "The AI revolution",
31 temperature=0.8, top_p=0.9)
32print(text)

...continued

Models of Language and Conversation

Week 7 34

Model Size vs. Performance

1 10M -> 100M -> 1B -> 10B -> 100B+

Practical model sizes for different use cases:
- **10M-100M**: Learning/experimentation, simple tasks

100M-1B: Specialized domains, resource-constrained

1B-10B: General-purpose, good quality

10B-100B+: State-of-the-art performance

Models of Language and Conversation

Week 7 35

Computational Requirements

Training a 125M parameter GPT:

 | Training Time | 1-2 days (single GPU) |

| --- | --- |

| Training Data | \sim10-100 GB text |
| Total Compute | \sim100 GPU-hours |

Scaling up to GPT-3 (175B):
- 1000x more parameters

~10,000x more compute needed

Requires distributed training across many GPUs

Models of Language and Conversation

Week 7 36

Common Issues and Debugging

Problems you might encounter:

1. **Loss not decreasing**
 - Check learning rate (try 1e-4 to 3e-4)

Verify data pipeline

Check for NaN/Inf values

2. Out of memory
- Reduce batch size

Reduce sequence length

Use gradient accumulation

Enablemixed precision

Models of Language and Conversation

Week 7 37

Extensions and Improvements

Ways to enhance your GPT implementation:

1. **Architectural improvements**
 - Rotary Position Embeddings (RoPE)

Flash Attention (faster attention)

Grouped-Query Attention

2. Training techniques
- Learning rate warmup and decay

Gradient accumulation

Mixed precision training (FP16/BF16)

Models of Language and Conversation

Week 7 38

Resources for Further Learning

Recommended resources:

- **Andrej Karpathy's nanoGPT**

Clean, minimal GPT implementation

github.com/karpathy/nanoGPT

 \item **Andrej Karpathy's "Let's build GPT" video**
 - Excellent step-by-step tutorial

YouTube

 \item **HuggingFace Transformers**
 - Production-ready implementations

Models of Language and Conversation

Week 7 39

https://github.com/karpathy/nanoGPT
https://www.youtube.com/watch?v=kCc8FmEb1nY

Hands-On Exercise

<div class="callout warning">

Your Task

Implement and train a small GPT model on your own text corpus!

Steps:
1. Choose a dataset (Shakespeare, Wikipedia, your own text)

2. Set up the data pipeline

3. Initialize the model (start small: 6 layers, 384 d_model)

4. Train for 10-20 epochs

5. Experiment with generation

6 Try different sampling strategies

Models of Language and Conversation

Week 7 40

Key Takeaways

1. **GPT is conceptually simple**
 - Stack of transformer decoder blocks

Predict next token

2. Key components
- BPE tokenization

Token + position embeddings

Masked multi-head attention

Feed-forward networks

3. Training requires care
- Good data, proper hyperparameters

Gradient clipping learning rate schedules

Models of Language and Conversation

Week 7 41

Readings

<div class="callout info">

Required Readings

1. Vaswani et al. (2017) - "Attention is All You Need" \
[ArXiv]

2. Radford et al. (2018) - "Improving Language Understanding by Generative Pre-

Training" \
[PDF]

<div class="callout info">

Code Resources
nanoGPT by Andrej Karpathy \

github com/karpathy/nanoGPT

Models of Language and Conversation

Week 7 42

https://arxiv.org/abs/1706.03762
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://github.com/karpathy/nanoGPT

Next Week

Week 8: No Classes - Instructor Away

Use this week to:
- Complete the GPT implementation exercise

Catch up on readings

Work on assignments

Experiment with different architectures

Week 9: RAG & Mixture of Experts

Retrieval Augmented Generation

Mixture of Experts architectures

Models of Language and Conversation

Week 7 43

 Questions?

 Happy Coding!

Models of Language and Conversation

Week 7 44

