Models of Language and Conversation

Lecture 23: Implementing GPT from Scratch

Building a Language Model in PyTorch =

Models of Language and Conversation

Week 7/

Week 7

Models of Language and Conversation

Today's Journey ¥#%

Week 7

Models of Language and Conversation

What We'll Build Today AT

<div class="callout warning">

Goal
Implement a simplified GPT model from scratch in PyTorch!

**kComponents we'll cover:xx
1. EE Tokenization (Byte-Pair Encoding)

2. &% Embeddings (token + position)
3. @ Masked Multi-Head Attention
4. “2 Transformer Decoder Block

5. @ Language Model Head

Week 7
R W TraininAa | AR

Models of Language and Conversation

Required Libraries &

limport torch

2import torch.nn as nn

3import torch.nn.functional as F

4from torch.utils.data import Dataset, DatalLoader
5import numpy as np

oimport tiktoken # OpenAl's BPE tokenizer

7

8# Check for GPU

9device = 'cuda' if torch.cuda.is_available() else 'cpu'

10print(f"Using device: {device}")

11

12# Hyperparameters

13config = {

14 ‘vocab_size': 50257, # GPT-2 vocabulary size

15 ‘d _model': 384, # Embedding dimension

16 'n_layers': 0, # Number of transformer blocks
Week7 17 ‘n_heads': 6, # Number of attention heads

18 'max seqg len': 256, # Maximum sequence length

Models of Language and Conversation

Required Libraries &

21 ‘learning_rate': 3e-4,
22 ‘num_epochs': 10
23}

...continued

Install: pip install torch tiktoken

Week 7

Models of Language and Conversation

What is Tokenization? &3

<div class="callout info'>

Tokenization
Converting text into a sequence of integer IDs that the model can process.

*xCommon strategies:xx
1. *xxWord-levelxk: Split on spaces
— X Huge vocabulary, can't handle unknown words

2.Character-level: Individual characters
- X Very long sequences, loses word structure

3. Subword-level (BPE): Best of both worlds!
- Frequent words: one token

Week 7 .
e Rare words: multiple subword tokens

Models of Language and Conversation

Byte-Pair Encoding (BPE) #

k*kHow BPE works :skx

1. Start with characters as base vocabulary

2. Find most frequent pair of adjacent tokens
3. Merge this pair into a new token
4. Repeat until desired vocabulary size

Example

xkText:xx "low low low lower lower newest newest"

Week 7

L i T .

Models of Language and Conversation

BPE Tokenization in Code

limport tiktoken
2
3# Load GPT-2 tokenizer (uses BPE)

4tokenizer = tiktoken.get_encoding("gpt2")

5

o# Example text

7text = "Hello, how are you doing today?"
8

9# Encode: text —> token IDs
10tokens = tokenizer.encode(text)
11print("Tokens:", tokens)
12# Output: [15496, 11, 703, 389, 345, 1804, 1909, 30]
13
14# Decode: token IDs —> text
15decoded = tokenizer.decode(tokens)
16print("Decoded:", decoded)
week 7 17# Output: "Hello, how are you doing today?"
18

Models of Language and Conversation

BPE Tokenization in Code ™

21 token_str = tokenizer.decode([token_id])
22 print(f"{token_id}: '{token_str}'")
23

24# Vocabulary size
25print(f"Vocab size: {tokenizer.n_vocab}") # 50257

...continued

Week 7

Models of Language and Conversation

Creating a Text Dataset &

1class TextDataset(Dataset):

2 def __init__ (self, text_file, tokenizer, max_seq_len):
3 # Load text
4 with open(text_file, 'r', encoding='utf-8') as f:
5 text = f.read()
6
7 # Tokenize entire text
8 self.tokens = tokenizer.encode(text)
9 self.max_seq_len = max_seqg_len
10
11 def __ len__ (self):
12 # Number of sequences we can extract
13 return len(self.tokens) - self.max_seq_len
14
15 def __ getitem__ (self, idx):
16 # Get sequence of length max_seqg_len + 1
Week7 17 # (we need +1 for the target)

18 chunk = self.tokens[idx:idx + self.max seqg len + 1]

10

Models of Language and Conversation

Creating a Text Dataset &

21 x = torch.tensor(chunk[:-1], dtype=torch.long)
22 # Target: all but first token

23 y = torch.tensor(chunk[1:], dtype=torch.long)
24

25 return x, y

26

27# Usage

28dataset = TextDataset('shakespeare.txt', tokenizer, config['max_seq_len'])
29dataloader = DatalLoader(dataset, batch_size=config['batch_size'], shuffle=True

...continued

Week 7 11

Models of Language and Conversation

Token and Position Embeddings &

1class Embeddings(nn.Module):

def __init__ (self, vocab_size, d_model, max_seq_len, dropout):
super().__init__ ()
Token embeddings: map token IDs to vectors
self.token_embed = nn.Embedding(vocab_size, d_model)

Position embeddings: encode position information
self.pos_embed = nn.Embedding(max_seq_len, d_model)

nn.Dropout(dropout)
d _model

self.dropout
self.d_model

def forward(self, x):
x shape: (batch_size, seq_len)
seq_len = x.size(1)

Token embeddings
tok emb = self.token embed(x) # (batch, seq len, d model)

12

Models of Language and Conversation

Token and Position Embeddings ¥

21 positions = torch.arange(@, seq_len, device=x.device)
22 pos_emb = self.pos_embed(positions) # (seq_len, d_model)
23
24 # Combine (broadcasting handles batch dimension)
25 embeddings = tok_emb + pos_emb
26
27 return self.dropout(embeddings)
...continued

Week 7

13

Models of Language and Conversation

Masked Multi-Head Attention @

1class MultiHeadAttention(nn.Module):

2 def __init__ (self, d_model, n_heads, dropout):

3 super().__init__ ()

4 assert d _model % n_heads ==

5

6 self.d _model = d _model

7 self.n_heads = n_heads

8 self.head _dim = d _model // n_heads

9

10 # Linear layers for Q, K, V

11 self.q_linear = nn.Linear(d_model, d_model)

12 self.k_linear = nn.Linear(d_model, d_model)

13 self.v_linear = nn.Linear(d _model, d _model)

14

15 # Output projection

16 self.out_linear = nn.Linear(d_model, d_model)
Week7 17 self.dropout = nn.Dropout(dropout) 14

Models of Language and Conversation

Masked Multi-Head Attention @

...continued

Week 7

21
22
23
24
25
26
27
28
29
30

<XO#%H

< XO %

Linear projections and split into heads

= self.q_linear(x).view(batch_size, seqg_len, self.n_heads, self.heac
= self.k_linear(x).view(batch_size, seq_len, self.n_heads, self.head
= self.v_linear(x).view(batch_size, seq_len, self.n_heads, self.heac
Transpose for attention: (batch, n_heads, seg_len, head_dim)

= Q.transpose(1, 2)

= K.transpose(1, 2)

= V.transpose(1, 2)

15

Models of Language and Conversation

Attention Computation (cont.) =:

1# Scaled dot-product attention
Scores: (batch, n_heads, seg_len, seq_len)

3 scores = torch.matmul(Q, K.transpose(-2, -1)) / np.sqgrt(self.head_dim)
4

5 # Apply causal mask (prevent attending to future tokens)

6 if mask 1s not None:

7 scores = scores.masked fill(mask == 0, float('-inf"'))

8

9 # Softmax to get attention weights

10 attn_weights = F.softmax(scores, dim=-1)
11 attn_weights = self.dropout(attn_weights)
12
13 # Apply attention to values
14 # Output: (batch, n_heads, seqg_len, head_dim)
15 attn_output = torch.matmul(attn_weights, V)
16
Week7 17 # Concatenate heads 16

18 attn output = attn output.transpose(l, 2).contiguous()

Models of Language and Conversation

Attention Computation (cont.) =:

21
22
23
24

...continued

Week 7

Final linear projection
output = self.out_linear(attn_output)

return output

17

Models of Language and Conversation

Creating the Causal Mask =

ldef create_causal_mask(seq_len, device):

2 il

3 Create a causal (lower—triangular) mask for autoregressive generation.
4

5 Returns:

6 mask: (seqg_len, seq_len) with 1s on and below diagonal, @s above
7 il

8 mask = torch.tril(torch.ones(seq_len, seqg_len, device=device))

9 return mask # Shape: (seg_len, seq_len)

10

11# Example: 5x5 causal mask
12mask = create_causal_mask(5, 'cpu')

13print(mask)

14# tensor([[1., 0., 0., 0., 0.],

15# [1., 1., 0., 0., 0.],

16# [1., 1., 1., 0., 0.1,
ook 7 17# [1., 1., 1., 1., 0.1,

18# [1., 1., 1., 1., 1.11])

Models of Language and Conversation

Feed-Forward Network

lclass FeedForward(nn.Module):

2 def __init__ (self, d_model, dropout):

3 super().__init__ ()

4 # GPT uses 4 % d_model as the hidden dimension
5 self.net = nn.Sequential(

6 nn.Linear(d_model, 4 x d_model),

7 nn.GELU(), # GPT uses GELU activation

8 nn.Linear(4 *x d_model, d_model),

9 nn.Dropout(dropout)

10)

11

12 def forward(self, x):
13 return self.net(x)

Why GELU (Gaussian Error Linear Unit)?

eek7 o« Smooth, non-monotonic activation

19

Models of Language and Conversation

Transformer Decoder Block &

1class TransformerBlock(nn.Module):

2 def __init__ (self, d_model, n_heads, dropout):
3 super().__init__ ()
4 self.attention = MultiHeadAttention(d_model, n_heads, dropout)
5 self.feed_forward = FeedForward(d_model, dropout)
6
7 # Layer normalization (applied before sub-layers in GPT)
8 self.1lnl = nn.LayerNorm(d_model)
9 self.1ln2 = nn.LayerNorm(d_model)
10
11 def forward(self, x, mask):
12 # Pre-norm architecture (used in GPT)
13 # Attention with residual connection
14 X = X + self.attention(self.lnl(x), mask)
15
16 # Feed-forward with residual connection
Week? 17 X = X + self.feed _forward(self.1ln2(x))

18

Models of Language and Conversation

Complete GPT Model £

1class GPT(nn.Module):

2 def __init__ (self, vocab_size, d_model, n_layers, n_heads, max_seq_len, dro
3 super().__init__ ()
4 self.max_seq_len = max_seqg_len
5
6 # Embeddings
7 self.embeddings = Embeddings(vocab_size, d_model, max_seq_len, dropout)
8
9 # Transformer blocks
10 self.blocks = nn.ModuleList([
11 TransformerBlock(d_model, n_heads, dropout)
12 for _ in range(n_layers)
13 1)
14
15 # Final layer norm
16 self.ln_f = nn.LayerNorm(d_model)
Week7 17 21

18 # Language model head (projects to vocabulary)

Models of Language and Conversation

Complete GPT Model &

21 # Initialize weights

22 self.apply(self._init_weights)

23

24 def _init_weights(self, module):

25 if isinstance(module, nn.Linear):

26 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

27 if module.bias is not None:

28 torch.nn.init.zeros_(module.bias)

29 elif isinstance(module, nn.Embedding):

30 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
...continued

Week 7

22

Models of Language and Conversation

GPT Forward Pass o

ldef forward(self, x, targets=None):
x shape: (batch_size, seq_len)

3 seq_len = x.size(1)
4
5 # Create causal mask
6 mask = create_causal_mask(seqg_len, x.device)
7
8 # Embeddings
9 x = self.embeddings(x) # (batch, seq_len, d_model)
10
11 # Apply transformer blocks
12 for block in self.blocks:
13 x = block(x, mask)
14
15 # Final layer norm
16 X = self.ln_f(x)
Week 7 17

18 # Project to vocabulary

23

Models of Language and Conversation

GPT Forward Pass &

21 # Compute loss if targets provided
22 loss = None
23 if targets 1is not None:
24 # Flatten for cross—entropy
25 loss = F.cross_entropy/(
26 logits.view(-1, logits.size(-1)),
27 targets.view(-1)
28)
29
30 return logits, Lloss
...continued

Week 7

24

Models of Language and Conversation

Training Loop ¥

1# Initialize model

2model = GPT(
vocab_size=config['vocab_size'l],
d_model=config['d_model'],
n_layers=config['n_layers'],
n_heads=config['n_heads'],
max_seq_len=config['max_seq_len'],
dropout=config['dropout"']
9).to(device)

10

11# Optimizer (AdamW is used for GPT)
12optimizer = torch.optim.Adamw(

13 model.parameters(),

14 Lr=config['learning_rate'],

15 betas=(0.9, 0.95),

16 welight_decay=0.1

Week 7 17)
18

ooONO UL B W

25

Models of Language and Conversation

Training Loop ¥

21for epoch in range(config['num_epochs']):
22 total _loss = 0

23 for batch_idx, (x, y) in enumerate(dataloader):
24 X, y = x.to(device), y.to(device)
25
26 # Forward pass
27 logits, loss = model(x, targets=y)
28
29 # Backward pass
30 optimizer.zero_grad()
31 loss.backward()
32 torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
33 optimizer.step()
34
35 total loss += loss.item()
36
Week7 37 avg_loss = total_loss / len(dataloader) 26

38 print(f"Epoch {epoch+1}/{config['num epochs'l}, Loss: {avg loss:.4f}")

Models of Language and Conversation
[J [J ®
Training Tips

**xBest practices for training GPT:*x*

1. *xGradient clippingx**
— Prevents exploding gradients

e Clip to max norm of 1.0

2.Learning rate schedule
- Warmup for first few thousand steps

o Cosine decay afterwards

3. AdamW optimizer
week 7~ Adam with decoupled weight decay

27

Models of Language and Conversation

Greedy Decoding @

1@torch.no_grad()

2def generate_greedy(model, tokenizer, prompt, max_new_tokens=50):

3 model.eval()

5 # Encode prompt
6 tokens = tokenizer.encode(prompt)
7 x = torch.tensor([tokens], dtype=torch.long, device=device)
8
9 for _ in range(max_new_tokens):
10 # Get predictions (crop to max_seqg_len if needed)
11 x_crop = x[:, —-model.max_seq_len:]
12 logits, _ = model(x_crop)
13
14 # Focus on last token's predictions
15 logits = logitsl[:, -1, :] # (batch, vocab_size)
16
Week7 17 # Get token with highest probability

18 next token = torch.argmax(logits, dim=-1, keepdim=True)

28

Models of Language and Conversation

Greedy Decoding @

Week 7

21 X = torch.cat([x, next_token], dim=1)

22

23 # Stop 1f we generate end-of-sequence token
24 if next_token.item() == tokenizer.eot_ token:
25 break

26

27 # Decode and return

28 generated_text = tokenizer.decode(x[0].tolist())
29 return generated_text

30

31# Example usage

32prompt = "Once upon a time"

33generated = generate_greedy(model, tokenizer, prompt, max_new_tokens=100)
34print(generated)

.continued

29

Models of Language and Conversation

Sampling Strategies

*kDifferent ways to sample next token:xkx

1. *xGreedy Decodingxx
— Always pick most likely token

e 4 Deterministic, fast
e X Repetitive, boring

2. Temperature Sampling
- Scale logits by temperature T

e T' < 1: More conservative (peaked distribution)

e T" > 1: More random (flat distribution)

Week 7

30

Models of Language and Conversation

Top-k and Nucleus Sampling

ldef sample_next_token(logits, temperature=1.0, top_k=None, top_p=None):

Sample next token from logits with various strategies.

3
4
5 Args:

6 logits: (vocab_size,) unnormalized log probabilities
7 temperature: Temperature for sampling

8 top_k: If set, only sample from top k tokens

9 top_p: If set, only sample from nucleus (top-p)

1@ 1ninii

11 # Apply temperature

12 logits = logits / temperature

14 # Top—-k filtering
15 if top_k 1s not None:
16 top_k = min(top_k, logits.size(-1))
Week 7 17 indices_to_remove = logits < torch.topk(logits, top_k)I[@]l[..., -1, 3Non
18 logits[indices to remove] = float('-inf"')

Models of Language and Conversation

Top-k and Nucleus Sampling

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Week 7 37

if top_p 1is not None:

sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=

Remove tokens with cumulative probability above threshold
sorted_indices_to_remove = cumulative_probs > top_p

sorted_indices_to_removel[..., 1:] = sorted_indices_to_removel...

sorted_indices_to_removel[..., 0] = 0

indices_to_remove = sorted _indices[sorted_indices_to_remove]
logits[indices_to_remove] = float('—inf')

Sample from distribution
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)

return next_token

1—1]

32

Models of Language and Conversation

Complete Generation Function

1@torch.no_grad()
2def generate(model, tokenizer, prompt, max_new_tokens=100,
temperature=1.0, top_k=40, top_p=0.9):
model.eval()

3

4

5

6 tokens = tokenizer.encode(prompt)

7 x = torch.tensor([tokens], dtype=torch.long, device=device)
8
9

for _ in range(max_new_tokens):

10 x_crop = x[:, —-model.max_seq_len:]
11 logits, _ = model(x_crop)
12 logits = logits[:, -1, :]1 # Last token
13
14 # Sample next token
15 next_token = sample_next_token(
16 logits[0],
Week7 17 temperature=temperature,

18 top k=top K,

33

Models of Language and Conversation

Complete Generation Function

21

22 X = torch.cat([x, next_token.unsqueeze(0)], dim=1)
23

24 if next_token.item() == tokenizer.eot_token:

25 break

26

27 return tokenizer.decode(x[@].tolist())

28

29# (Creative generation

30text = generate(model, tokenizer, "The AI revolution",
31 temperature=0.8, top_p=0.9)
32print(text)

...continued

Week 7

34

Models of Language and Conversation

Model Size vs. Performance &l

1 1oM —> 100M -> 1B —> 10B -> 100B+

*xPractical model sizes for different use cases:*x
— **x10M-100M*x*: Learning/experimentation, simple tasks

e 100M-1B: Specialized domains, resource-constrained
e 1B-10B: General-purpose, good quality
e 10B-100B+: State-of-the-art performance

Week 7

35

Models of Language and Conversation

Computational Requirements

xTraining a 125M parameter GPT:

| Training Time | 1-2 days (single GPU)

=== ---
Training Data | \sim10-100 GB text |

Total Compute | \sim100 GPU-hours |

xkScaling up to GPT-3 (175B) :*x*
— 1000x more parameters

s e ~10,000x more compute needed

36

Models of Language and Conversation

Common Issues and Debugging “»

**xProblems you might encounter:xx

1. **xLoss not decreasingxx
— Check learning rate (try le-4 to 3e-4)

Verify data pipeline
o Check for NaN/Inf values

2. 0ut of memory
- Reduce batch size

e Reduce sequence length

Week 7 ® Use gradient accumulation

~ 1\« e XX & e

37

Models of Language and Conversation

Extensions and Improvements #

**xWays to enhance your GPT implementation:kx

1. *kkArchitectural improvementsxx
- Rotary Position Embeddings (RoPE)

Flash Attention (faster attention)

o Grouped-Query Attention

2. Training techniques
- Learning rate warmup and decay

Gradient accumulation
e Mixed precision training (FP16/BF16)

Week 7

38

Models of Language and Conversation

Resources for Further Learning &

k*kRecommended resources:skxxk

— *xAndrej Karpathy's nanoGPTxx
e Clean, minimal GPT implementation
o github.com/karpathy/nanoGPT

\item *xkAndrej Karpathy's "Let's build GPT" videoxx
— Excellent step—-by-step tutorial

e Youlube

\item xkHuggingFace Transformerssxx

Week 7 i . .
— Production-ready implementations

39

https://github.com/karpathy/nanoGPT
https://www.youtube.com/watch?v=kCc8FmEb1nY

Models of Language and Conversation

Hands-On Exercise

<div class="callout warning">

Your Task
Implement and train a small GPT model on your own text corpus!

**kSteps : xx
1. Choose a dataset (Shakespeare, Wikipedia, your own text)

2.Set up the data pipeline
3. Initialize the model (start small: 6 layers, 384 d_model)
4. Train for 10-20 epochs

5. Experiment with generation
Week 7
A Trvi AdAiffarant eamnlina ctratadiac

40

Models of Language and Conversation

Key Takeaways /#

1. **%GPT 1is conceptually simp lexx
— Stack of transformer decoder blocks

e Predict next token

2. Key components
- BPE tokenization

e Token + position embeddings

Masked multi-head attention

e Feed-forward networks

3. Training requires care

- Good data, proper hyperparameters
Week 7

Y o YN A By A . I PRy P I

Models of Language and Conversation

Readings LJ

<div class="callout info'>

Required Readings

1. Vaswani et al. (2017) - "Attention is All You Need" \
[ArXiv]

2. Radford et al. (2018) - "Improving Language Understanding by Generative Pre-
Training" \
[PDF]

<div class="callout info'">

Code Resources

Week 7

e NanoGPT by Andrej Karpathy \

~irhhiilh AAA L Arnatinv lnanrnACDT

42

https://arxiv.org/abs/1706.03762
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://github.com/karpathy/nanoGPT

Models of Language and Conversation

Next Week &

*xWeek 8: No Classes — Instructor Awayxx

*xUse this week to:xkx
— Complete the GPT implementation exercise

Catch up on readings

Work on assignments

Experiment with different architectures
Week 9: RAG & Mixture of Experts

o Retrieval Augmented Generation
Week 7

Mixture of Experts architectures

43

Models of Language and Conversation

Questions?

Happy Coding! #

Week 7

44

