
Lecture 23: Implementing GPT from Scratch

Building a Language Model in PyTorch 
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Today's Journey 
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What We'll Build Today 

<div class="callout warning">

Goal

Implement a simplified GPT model from scratch in PyTorch!

**Components we'll cover:**
1.  Tokenization (Byte-Pair Encoding)

2.  Embeddings (token + position)

3.  Masked Multi-Head Attention

4.  Transformer Decoder Block

5.  Language Model Head

6 Training Loop
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Required Libraries 

1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4from torch.utils.data import Dataset, DataLoader
5import numpy as np
6import tiktoken  # OpenAI's BPE tokenizer
7
8# Check for GPU
9device = 'cuda' if torch.cuda.is_available() else 'cpu'
10print(f"Using device: {device}")
11
12# Hyperparameters
13config = {
14    'vocab_size': 50257,      # GPT-2 vocabulary size
15    'd_model': 384,            # Embedding dimension
16    'n_layers': 6,             # Number of transformer blocks
17    'n_heads': 6,              # Number of attention heads
18    'max_seq_len': 256,        # Maximum sequence length
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Required Libraries 

21    'learning_rate': 3e-4,
22    'num_epochs': 10
23}

...continued

Install: pip install torch tiktoken
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What is Tokenization? 

<div class="callout info">

Tokenization

Converting text into a sequence of integer IDs that the model can process.

**Common strategies:**
1. **Word-level**: Split on spaces
    -  Huge vocabulary, can't handle unknown words

2. Character-level: Individual characters

-  Very long sequences, loses word structure

3. Subword-level (BPE): Best of both worlds! 
- Frequent words: one token

Rare words: multiple subword tokens
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Byte-Pair Encoding (BPE) 

**How BPE works:**

1. Start with characters as base vocabulary

2. Find most frequent pair of adjacent tokens

3. Merge this pair into a new token

4. Repeat until desired vocabulary size

Example

    **Text:** "low low low lower lower newest newest"

    

**Iterations:**
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BPE Tokenization in Code 

1import tiktoken
2
3# Load GPT-2 tokenizer (uses BPE)
4tokenizer = tiktoken.get_encoding("gpt2")
5
6# Example text
7text = "Hello, how are you doing today?"
8
9# Encode: text -> token IDs
10tokens = tokenizer.encode(text)
11print("Tokens:", tokens)
12# Output: [15496, 11, 703, 389, 345, 1804, 1909, 30]
13
14# Decode: token IDs -> text
15decoded = tokenizer.decode(tokens)
16print("Decoded:", decoded)
17# Output: "Hello, how are you doing today?"
18
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BPE Tokenization in Code 

21    token_str = tokenizer.decode([token_id])
22    print(f"{token_id}: '{token_str}'")
23
24# Vocabulary size
25print(f"Vocab size: {tokenizer.n_vocab}")  # 50257

...continued
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Creating a Text Dataset 

1class TextDataset(Dataset):
2    def __init__(self, text_file, tokenizer, max_seq_len):
3        # Load text
4        with open(text_file, 'r', encoding='utf-8') as f:
5            text = f.read()
6
7        # Tokenize entire text
8        self.tokens = tokenizer.encode(text)
9        self.max_seq_len = max_seq_len
10
11    def __len__(self):
12        # Number of sequences we can extract
13        return len(self.tokens) - self.max_seq_len
14
15    def __getitem__(self, idx):
16        # Get sequence of length max_seq_len + 1
17        # (we need +1 for the target)
18        chunk = self.tokens[idx:idx + self.max_seq_len + 1]
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Creating a Text Dataset 

21        x = torch.tensor(chunk[:-1], dtype=torch.long)
22        # Target: all but first token
23        y = torch.tensor(chunk[1:], dtype=torch.long)
24
25        return x, y
26
27# Usage
28dataset = TextDataset('shakespeare.txt', tokenizer, config['max_seq_len'])
29dataloader = DataLoader(dataset, batch_size=config['batch_size'], shuffle=True

...continued
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Token and Position Embeddings 

1class Embeddings(nn.Module):
2    def __init__(self, vocab_size, d_model, max_seq_len, dropout):
3        super().__init__()
4        # Token embeddings: map token IDs to vectors
5        self.token_embed = nn.Embedding(vocab_size, d_model)
6
7        # Position embeddings: encode position information
8        self.pos_embed = nn.Embedding(max_seq_len, d_model)
9
10        self.dropout = nn.Dropout(dropout)
11        self.d_model = d_model
12
13    def forward(self, x):
14        # x shape: (batch_size, seq_len)
15        seq_len = x.size(1)
16
17        # Token embeddings
18        tok_emb = self.token_embed(x)  # (batch, seq_len, d_model)
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Token and Position Embeddings 

21        positions = torch.arange(0, seq_len, device=x.device)
22        pos_emb = self.pos_embed(positions)  # (seq_len, d_model)
23
24        # Combine (broadcasting handles batch dimension)
25        embeddings = tok_emb + pos_emb
26
27        return self.dropout(embeddings)

...continued

Models of Language and Conversation

Week 7 13



Masked Multi-Head Attention 

1class MultiHeadAttention(nn.Module):
2    def __init__(self, d_model, n_heads, dropout):
3        super().__init__()
4        assert d_model % n_heads == 0
5
6        self.d_model = d_model
7        self.n_heads = n_heads
8        self.head_dim = d_model // n_heads
9
10        # Linear layers for Q, K, V
11        self.q_linear = nn.Linear(d_model, d_model)
12        self.k_linear = nn.Linear(d_model, d_model)
13        self.v_linear = nn.Linear(d_model, d_model)
14
15        # Output projection
16        self.out_linear = nn.Linear(d_model, d_model)
17        self.dropout = nn.Dropout(dropout)
18
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Masked Multi-Head Attention 

21
22        # Linear projections and split into heads
23        Q = self.q_linear(x).view(batch_size, seq_len, self.n_heads, self.head
24        K = self.k_linear(x).view(batch_size, seq_len, self.n_heads, self.head
25        V = self.v_linear(x).view(batch_size, seq_len, self.n_heads, self.head
26
27        # Transpose for attention: (batch, n_heads, seq_len, head_dim)
28        Q = Q.transpose(1, 2)
29        K = K.transpose(1, 2)
30        V = V.transpose(1, 2)

...continued
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Attention Computation (cont.) 

1# Scaled dot-product attention
2        # Scores: (batch, n_heads, seq_len, seq_len)
3        scores = torch.matmul(Q, K.transpose(-2, -1)) / np.sqrt(self.head_dim)
4
5        # Apply causal mask (prevent attending to future tokens)
6        if mask is not None:
7            scores = scores.masked_fill(mask == 0, float('-inf'))
8
9        # Softmax to get attention weights
10        attn_weights = F.softmax(scores, dim=-1)
11        attn_weights = self.dropout(attn_weights)
12
13        # Apply attention to values
14        # Output: (batch, n_heads, seq_len, head_dim)
15        attn_output = torch.matmul(attn_weights, V)
16
17        # Concatenate heads
18        attn_output = attn_output.transpose(1, 2).contiguous()
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Attention Computation (cont.) 

21        # Final linear projection
22        output = self.out_linear(attn_output)
23
24        return output

...continued
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Creating the Causal Mask 

1def create_causal_mask(seq_len, device):
2    """
3    Create a causal (lower-triangular) mask for autoregressive generation.
4
5    Returns:
6        mask: (seq_len, seq_len) with 1s on and below diagonal, 0s above
7    """
8    mask = torch.tril(torch.ones(seq_len, seq_len, device=device))
9    return mask  # Shape: (seq_len, seq_len)
10
11# Example: 5x5 causal mask
12mask = create_causal_mask(5, 'cpu')
13print(mask)
14# tensor([[1., 0., 0., 0., 0.],
15#         [1., 1., 0., 0., 0.],
16#         [1., 1., 1., 0., 0.],
17#         [1., 1., 1., 1., 0.],
18#         [1., 1., 1., 1., 1.]])
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Feed-Forward Network 

1class FeedForward(nn.Module):
2    def __init__(self, d_model, dropout):
3        super().__init__()
4        # GPT uses 4 * d_model as the hidden dimension
5        self.net = nn.Sequential(
6            nn.Linear(d_model, 4 * d_model),
7            nn.GELU(),  # GPT uses GELU activation
8            nn.Linear(4 * d_model, d_model),
9            nn.Dropout(dropout)
10        )
11
12    def forward(self, x):
13        return self.net(x)

Why GELU (Gaussian Error Linear Unit)?

Smooth, non-monotonic activation
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Transformer Decoder Block 

1class TransformerBlock(nn.Module):
2    def __init__(self, d_model, n_heads, dropout):
3        super().__init__()
4        self.attention = MultiHeadAttention(d_model, n_heads, dropout)
5        self.feed_forward = FeedForward(d_model, dropout)
6
7        # Layer normalization (applied before sub-layers in GPT)
8        self.ln1 = nn.LayerNorm(d_model)
9        self.ln2 = nn.LayerNorm(d_model)
10
11    def forward(self, x, mask):
12        # Pre-norm architecture (used in GPT)
13        # Attention with residual connection
14        x = x + self.attention(self.ln1(x), mask)
15
16        # Feed-forward with residual connection
17        x = x + self.feed_forward(self.ln2(x))
18
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Complete GPT Model 

1class GPT(nn.Module):
2    def __init__(self, vocab_size, d_model, n_layers, n_heads, max_seq_len, dro
3        super().__init__()
4        self.max_seq_len = max_seq_len
5
6        # Embeddings
7        self.embeddings = Embeddings(vocab_size, d_model, max_seq_len, dropout)
8
9        # Transformer blocks
10        self.blocks = nn.ModuleList([
11            TransformerBlock(d_model, n_heads, dropout)
12            for _ in range(n_layers)
13        ])
14
15        # Final layer norm
16        self.ln_f = nn.LayerNorm(d_model)
17
18        # Language model head (projects to vocabulary)
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Complete GPT Model 

21        # Initialize weights
22        self.apply(self._init_weights)
23
24    def _init_weights(self, module):
25        if isinstance(module, nn.Linear):
26            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
27            if module.bias is not None:
28                torch.nn.init.zeros_(module.bias)
29        elif isinstance(module, nn.Embedding):
30            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

...continued
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GPT Forward Pass 

1def forward(self, x, targets=None):
2        # x shape: (batch_size, seq_len)
3        seq_len = x.size(1)
4
5        # Create causal mask
6        mask = create_causal_mask(seq_len, x.device)
7
8        # Embeddings
9        x = self.embeddings(x)  # (batch, seq_len, d_model)
10
11        # Apply transformer blocks
12        for block in self.blocks:
13            x = block(x, mask)
14
15        # Final layer norm
16        x = self.ln_f(x)
17
18        # Project to vocabulary
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GPT Forward Pass 

21        # Compute loss if targets provided
22        loss = None
23        if targets is not None:
24            # Flatten for cross-entropy
25            loss = F.cross_entropy(
26                logits.view(-1, logits.size(-1)),
27                targets.view(-1)
28            )
29
30        return logits, loss

...continued

Models of Language and Conversation

Week 7 24



Training Loop 

1# Initialize model
2model = GPT(
3    vocab_size=config['vocab_size'],
4    d_model=config['d_model'],
5    n_layers=config['n_layers'],
6    n_heads=config['n_heads'],
7    max_seq_len=config['max_seq_len'],
8    dropout=config['dropout']
9).to(device)
10
11# Optimizer (AdamW is used for GPT)
12optimizer = torch.optim.AdamW(
13    model.parameters(),
14    lr=config['learning_rate'],
15    betas=(0.9, 0.95),
16    weight_decay=0.1
17)
18
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Training Loop 

21for epoch in range(config['num_epochs']):
22    total_loss = 0
23    for batch_idx, (x, y) in enumerate(dataloader):
24        x, y = x.to(device), y.to(device)
25
26        # Forward pass
27        logits, loss = model(x, targets=y)
28
29        # Backward pass
30        optimizer.zero_grad()
31        loss.backward()
32        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
33        optimizer.step()
34
35        total_loss += loss.item()
36
37    avg_loss = total_loss / len(dataloader)
38    print(f"Epoch {epoch+1}/{config['num_epochs']}, Loss: {avg_loss:.4f}")
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Training Tips 

**Best practices for training GPT:**

1. **Gradient clipping**
    - Prevents exploding gradients

Clip to max norm of 1.0

2. Learning rate schedule
- Warmup for first few thousand steps

Cosine decay afterwards

3. AdamW optimizer

- Adam with decoupled weight decay
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Greedy Decoding 

1@torch.no_grad()
2def generate_greedy(model, tokenizer, prompt, max_new_tokens=50):
3    model.eval()
4
5    # Encode prompt
6    tokens = tokenizer.encode(prompt)
7    x = torch.tensor([tokens], dtype=torch.long, device=device)
8
9    for _ in range(max_new_tokens):
10        # Get predictions (crop to max_seq_len if needed)
11        x_crop = x[:, -model.max_seq_len:]
12        logits, _ = model(x_crop)
13
14        # Focus on last token's predictions
15        logits = logits[:, -1, :]  # (batch, vocab_size)
16
17        # Get token with highest probability
18        next_token = torch.argmax(logits, dim=-1, keepdim=True)
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Greedy Decoding 

21        x = torch.cat([x, next_token], dim=1)
22
23        # Stop if we generate end-of-sequence token
24        if next_token.item() == tokenizer.eot_token:
25            break
26
27    # Decode and return
28    generated_text = tokenizer.decode(x[0].tolist())
29    return generated_text
30
31# Example usage
32prompt = "Once upon a time"
33generated = generate_greedy(model, tokenizer, prompt, max_new_tokens=100)
34print(generated)

...continued
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Sampling Strategies 

**Different ways to sample next token:**

1. **Greedy Decoding**
    - Always pick most likely token

 Deterministic, fast

 Repetitive, boring

2. Temperature Sampling
- Scale logits by temperature 

: More conservative (peaked distribution)

: More random (flat distribution)
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Top-k and Nucleus Sampling 

1def sample_next_token(logits, temperature=1.0, top_k=None, top_p=None):
2    """
3    Sample next token from logits with various strategies.
4
5    Args:
6        logits: (vocab_size,) unnormalized log probabilities
7        temperature: Temperature for sampling
8        top_k: If set, only sample from top k tokens
9        top_p: If set, only sample from nucleus (top-p)
10    """
11    # Apply temperature
12    logits = logits / temperature
13
14    # Top-k filtering
15    if top_k is not None:
16        top_k = min(top_k, logits.size(-1))
17        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, Non
18        logits[indices_to_remove] = float('-inf')
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Top-k and Nucleus Sampling 

21    if top_p is not None:
22        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
23        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=
24
25        # Remove tokens with cumulative probability above threshold
26        sorted_indices_to_remove = cumulative_probs > top_p
27        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1]
28        sorted_indices_to_remove[..., 0] = 0
29
30        indices_to_remove = sorted_indices[sorted_indices_to_remove]
31        logits[indices_to_remove] = float('-inf')
32
33    # Sample from distribution
34    probs = F.softmax(logits, dim=-1)
35    next_token = torch.multinomial(probs, num_samples=1)
36
37    return next_token
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Complete Generation Function 

1@torch.no_grad()
2def generate(model, tokenizer, prompt, max_new_tokens=100,
3             temperature=1.0, top_k=40, top_p=0.9):
4    model.eval()
5
6    tokens = tokenizer.encode(prompt)
7    x = torch.tensor([tokens], dtype=torch.long, device=device)
8
9    for _ in range(max_new_tokens):
10        x_crop = x[:, -model.max_seq_len:]
11        logits, _ = model(x_crop)
12        logits = logits[:, -1, :]  # Last token
13
14        # Sample next token
15        next_token = sample_next_token(
16            logits[0],
17            temperature=temperature,
18            top_k=top_k,
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Complete Generation Function 

21
22        x = torch.cat([x, next_token.unsqueeze(0)], dim=1)
23
24        if next_token.item() == tokenizer.eot_token:
25            break
26
27    return tokenizer.decode(x[0].tolist())
28
29# Creative generation
30text = generate(model, tokenizer, "The AI revolution",
31                temperature=0.8, top_p=0.9)
32print(text)

...continued
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Model Size vs. Performance 

1 10M ->  100M ->  1B ->  10B ->  100B+

**Practical model sizes for different use cases:**
- **10M-100M**: Learning/experimentation, simple tasks

100M-1B: Specialized domains, resource-constrained

1B-10B: General-purpose, good quality

10B-100B+: State-of-the-art performance
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Computational Requirements 

**Training a 125M parameter GPT:**

    | Training Time | 1-2 days (single GPU) |

| --- | --- |

| Training Data | $\sim$10-100 GB text |
| Total Compute | $\sim$100 GPU-hours |

**Scaling up to GPT-3 (175B):**
- 1000x more parameters

~10,000x more compute needed

Requires distributed training across many GPUs
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Common Issues and Debugging 

**Problems you might encounter:**

1. **Loss not decreasing**
    - Check learning rate (try 1e-4 to 3e-4)

Verify data pipeline

Check for NaN/Inf values

2. Out of memory
- Reduce batch size

Reduce sequence length

Use gradient accumulation

Enablemixed precision
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Extensions and Improvements 

**Ways to enhance your GPT implementation:**

1. **Architectural improvements**
    - Rotary Position Embeddings (RoPE)

Flash Attention (faster attention)

Grouped-Query Attention

2. Training techniques
- Learning rate warmup and decay

Gradient accumulation

Mixed precision training (FP16/BF16)
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Resources for Further Learning 

**Recommended resources:**

- **Andrej Karpathy's nanoGPT**

Clean, minimal GPT implementation

github.com/karpathy/nanoGPT

  \item **Andrej Karpathy's "Let's build GPT" video**
  - Excellent step-by-step tutorial

YouTube

  \item **HuggingFace Transformers**
  - Production-ready implementations
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Hands-On Exercise 

<div class="callout warning">

Your Task

Implement and train a small GPT model on your own text corpus!

**Steps:**
1. Choose a dataset (Shakespeare, Wikipedia, your own text)

2. Set up the data pipeline

3. Initialize the model (start small: 6 layers, 384 d_model)

4. Train for 10-20 epochs

5. Experiment with generation

6 Try different sampling strategies
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Key Takeaways 

1. **GPT is conceptually simple**
    - Stack of transformer decoder blocks

Predict next token

2. Key components
- BPE tokenization

Token + position embeddings

Masked multi-head attention

Feed-forward networks

3. Training requires care
- Good data, proper hyperparameters

Gradient clipping learning rate schedules
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Readings 

<div class="callout info">

Required Readings

1. Vaswani et al. (2017) - "Attention is All You Need" \
[ArXiv]

2. Radford et al. (2018) - "Improving Language Understanding by Generative Pre-

Training" \
[PDF]

<div class="callout info">

Code Resources
nanoGPT by Andrej Karpathy \

github com/karpathy/nanoGPT
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Next Week 

**Week 8: No Classes - Instructor Away**

**Use this week to:**
- Complete the GPT implementation exercise

Catch up on readings

Work on assignments

Experiment with different architectures

Week 9: RAG & Mixture of Experts

Retrieval Augmented Generation

Mixture of Experts architectures
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    Questions? 

    

    Happy Coding! 
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