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Today's Agenda 

1. Real-World Applications: Where BERT shines

2. Cognitive Neuroscience: Brain-model parallels

3. Understanding vs. Pattern Matching: The big debate

4. Limitations: What BERT can't do

5. Practical Tips: Deployment and optimization

6. Future Directions: Where are we heading?

Goal: Connect BERT to real applications and understand broader implications
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BERT Applications 

BERT excels at understanding tasks:

Classification Tasks:

Sentiment Analysis

Topic Classification

Spam Detection

Intent Recognition

Token-Level Tasks:

Named Entity Recognition (NER)

Part-of-Speech Tagging

Word Sense Disambiguation
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Case Study: Google Search 

BERT revolutionized search in 2019

1# Why word order matters: BERT understands prepositions!
2query = "2019 brazil traveler to usa need a visa"
3
4# Before BERT (bag-of-words matching):
5keywords = ["brazil", "traveler", "usa", "visa"]
6# Matches both: "US traveler to Brazil" AND "Brazil traveler to US"
7
8# With BERT (contextual understanding):
9bert_understanding = {
10    "subject": "brazil traveler",      # WHO is traveling
11    "destination": "usa",               # WHERE they're going
12    "direction": "brazil → usa",        # The preposition "to" is key!
13    "intent": "visa requirements"
14}
15# BERT correctly ranks: "Brazil citizen visa requirements for USA"

PSYC 51.07: Models of Language and Communication

Winter 2026 4



Question Answering with BERT 

Extractive QA: Find answer span in passage

Example
Context: "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were

the people who in the 10th and 11th centuries gave their name to Normandy, a region in
France."

Question: "In what country is Normandy located?"

Answer: France

1from transformers import pipeline
2
3# Load QA pipeline with BERT
4qa_pipeline = pipeline("question-answering", model="bert-large-uncased-whole-wo
5
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Named Entity Recognition 

Token-level classification task

Example
Input: "Apple Inc. is headquartered in Cupertino, California."

Output:

Apple Inc. → {ORGANIZATION}

Cupertino → {LOCATION}

California → {LOCATION}

1from transformers import pipeline
2
3# Load NER pipeline
4ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
5
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Sentiment Analysis 

Sequence classification task

Examples
"This movie was absolutely amazing!" → {POSITIVE}

"The product broke after one week." → {NEGATIVE}

"The weather is cloudy today." → {NEUTRAL}

1from transformers import pipeline
2
3# Load sentiment analysis pipeline
4sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-unca
5
6# Analyze sentiments
7texts = [
8    "This movie was absolutely amazing!",
9 "The product broke after one week "
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Semantic Similarity 

Measuring sentence similarity with BERT embeddings

1from transformers import BertTokenizer, BertModel
2import torch
3import torch.nn.functional as F
4
5tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
6model = BertModel.from_pretrained('bert-base-uncased')
7
8def get_sentence_embedding(sentence):
9    inputs = tokenizer(sentence, return_tensors='pt', padding=True, truncation=
10    outputs = model(**inputs)
11    # Use [CLS] token embedding as sentence representation
12    return outputs.last_hidden_state[:, 0, :]
13
14# Compare sentences
15sent1 = "The cat is sleeping on the couch"
16sent2 = "A feline is resting on the sofa"
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Semantic Similarity 

21emb3 = get_sentence_embedding(sent3)
22
23# Compute cosine similarities
24sim_12 = F.cosine_similarity(emb1, emb2).item()
25sim_13 = F.cosine_similarity(emb1, emb3).item()
26
27print(f"Similarity (1-2): {sim_12:.3f}")  # High (paraphrases)
28print(f"Similarity (1-3): {sim_13:.3f}")  # Low (different topics)

...continued
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Cognitive Neuroscience Perspective 

How do brains and models process language?

Predictive Processing in the Brain:

Brain constantly predicts upcoming input

N400: Neural response to unexpected words

P600: Syntactic anomaly detection

Context shapes predictions

Prediction errors drive learning

Key Brain Regions:

Left IFG: Syntax processing

Left STG/MTG: Semantic processing
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Prediction in Brains vs. Language Models 

Parallels between neural and artificial systems

Phenomenon Human Brain Transformer Models

Surprise N400 amplitude (EEG) Cross-entropy loss

Hierarchy sounds → words → sentences tokens → phrases → meaning

Context Prior discourse, world knowledge Self-attention over sequence

Representation Population coding (neurons) Distributed embeddings (vectors)

1# Concrete example: Surprise/N400 parallel
2sentence_a = "I take my coffee with cream and sugar"  # Expected
3sentence_b = "I take my coffee with cream and socks"  # Surprising
4
5# Brain: N400 amplitude higher for "socks"
6# M d l Hi h l f " k "
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Neural Encoding with Language Models 

Can we predict brain activity from language models?

1# Neural encoding experiment workflow
2import numpy as np
3from transformers import BertModel
4
5# 1. Participant reads sentences while in fMRI scanner
6sentences = ["The dog chased the cat", "She opened the door", ...]
7brain_activity = fmri_scanner.record(sentences)  # (n_sentences, n_voxels)
8
9# 2. Extract BERT representations for same sentences
10bert = BertModel.from_pretrained("bert-base-uncased")
11bert_embeddings = []
12for sent in sentences:
13    outputs = bert(tokenizer(sent, return_tensors="pt"))
14    # Use layer 8 (found to correlate best with semantic areas)
15    bert_embeddings.append(outputs.hidden_states[8].mean(dim=1))
16
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Neural Encoding with Language Models 

21# 4. Predict brain activity for new sentences
22predictions = encoder.predict(bert_embeddings[80:])
23correlation = np.corrcoef(predictions.flat, brain_activity[80:].flat)[0,1]
24# Correlation ~ 0.3-0.5 in language areas (significant!)

...continued
Key finding: BERT layer 8 best predicts semantic areas; layers 2-4 predict phonological

areas

Reference: Caucheteux & King (2022) - "Brains and algorithms partially converge"
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Discussion: What Does the Model "Understand"? 

Does BERT understand language?

Evidence FOR understanding:

Captures syntax and semantics

Resolves ambiguity

Handles long-range dependencies

Generalizes to new examples

Predicts brain activity

Solves complex tasks

"If it acts like it understands, maybe it does?"

Evidence AGAINST understanding:
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Adversarial Examples and Brittleness 

BERT can be fooled easily

1from transformers import pipeline
2classifier = pipeline("sentiment-analysis")
3
4# Works correctly
5classifier("This movie was absolutely wonderful!")
6# → [{'label': 'POSITIVE', 'score': 0.9998}]
7
8# Adding irrelevant negative words flips prediction!
9classifier("This movie was absolutely wonderful! [SEP] bad bad bad bad")
10# → [{'label': 'NEGATIVE', 'score': 0.9234}]  # WRONG!
11
12# Synonym substitution can break it
13classifier("The food was good")   # → POSITIVE (0.99)
14classifier("The food was fine")   # → POSITIVE (0.72)  # Less confident
15classifier("The food was ok")     # → NEGATIVE (0.51)  # WRONG!
16
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Limitations of Current Models 

Despite impressive performance, transformers have limitations:

1. Quadratic Complexity
Self-attention scales as 

Limited context windows (512-4096 tokens)

Cannot process very long documents efficiently

2. No True Understanding

Pattern matching vs. comprehension

Lack of common sense

No world model

3. Data Efficiency

Requires massive training data
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Bias in Language Models 

Models reflect and can amplify societal biases

1from transformers import pipeline
2unmasker = pipeline("fill-mask", model="bert-base-uncased")
3
4# Gender bias in occupations
5unmasker("The doctor said [MASK] would be late.")
6# → [('he', 0.62), ('she', 0.18), ('it', 0.08), ...]
7
8unmasker("The nurse said [MASK] would be late.")
9# → [('she', 0.71), ('he', 0.15), ('it', 0.06), ...]
10
11# Racial bias (different sentiment for names)
12classifier = pipeline("sentiment-analysis")
13classifier("Emily is a brilliant scientist.")  # POSITIVE: 0.98
14classifier("Jamal is a brilliant scientist.")  # POSITIVE: 0.94  # Lower!
15
16# Where does bias come from?
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Practical Tips for Working with Transformers 

1. Start with Pre-trained Models

Don't train from scratch (too expensive!)

Use HuggingFace Model Hub

Choose appropriate model size

2. Fine-tuning Best Practices
Use small learning rate (1e-5 to 5e-5)

Add warmup steps

Monitor for overfitting

Freeze early layers if data is limited

3. Computational Efficiency
Use mixed precision training (FP16)
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Deployment Considerations 

Moving from research to production

1# Example: Optimizing BERT for production deployment
2from transformers import BertModel, BertTokenizer
3import torch
4import onnxruntime
5
6# Step 1: Load model
7model = BertModel.from_pretrained("bert-base-uncased")
8tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
9
10# Step 2: Quantize for speed (INT8 instead of FP32)
11quantized_model = torch.quantization.quantize_dynamic(
12    model, {torch.nn.Linear}, dtype=torch.qint8
13)
14# Result: 4x smaller, 2x faster on CPU
15
16# Step 3: Export to ONNX for production
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Deployment Considerations 

21session = onnxruntime.InferenceSession("bert.onnx")
22# 1.5x faster than PyTorch, works on any platform

...continued

Optimization Size Latency Quality

Original (FP32) 420MB 50ms 100%

Quantized (INT8) 110MB 25ms 99.5%

ONNX + Quantized 110MB 20ms 99.5%

DistilBERT + ONNX 65MB 12ms 97%
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Future Directions 

Where is the field heading?

1. Longer Context
Efficient attention mechanisms (linear, sparse)

Models with 100K+ token context

Better long-document understanding

2. Multimodal Models

Vision + Language (CLIP, DALL-E)

Audio + Language (Whisper)

Grounded understanding

3. Better Pre-training

More efficient objectives
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Encoder vs Decoder Models Revisited 

Different models for different tasks

p{4.5cm}} Encoder (BERT) Decoder (GPT)

• Classification

• NER, QA

• Similarity Generation tasks:

• Text completion

• Dialogue

• Creative writing

Interesting observation:

Decoder only models (GPT 3 LLaMA) can also do classification via prompting!

PSYC 51.07: Models of Language and Communication

Winter 2026 22



Discussion Questions 

1. Understanding vs. Pattern Matching:

Where do you draw the line?

Is there a test for "true" understanding?

Does it matter for applications?

2. Brain-Model Parallels:
How useful are these comparisons?

What can neuroscience learn from AI?

What can AI learn from neuroscience?

3. Bias and Fairness:
Who is responsible for addressing bias?

Can we ever have completely unbiasedmodels?
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Assignment 4: Context-Aware Models 

Hands-on experience with transformers!

Tasks:

1. Implement Attention Mechanism

Build scaled dot-product attention from scratch

Visualize attention weights

2. Fine-tune BERT
Load pre-trained BERT

Fine-tune on sentiment analysis

Compare to baseline models

3. Analyze Contextual Embeddings

E t t b ddi f l d
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Summary: Weeks 5-6 

What we learned:

1. Evolution of Context
Seq2Seq → Attention → Transformers

From bottleneck to full parallelization

2. Transformer Architecture

Self-attention, multi-head attention

Positional encoding, layer norm, residuals

Encoder-only (BERT), Decoder-only (GPT), Both (T5)

3. BERT & Variants
Masked Language Modeling

P t i th fi t di
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Resources & Further Reading 

Key Papers:

Vaswani et al. (2017) - Attention Is All You Need

Devlin et al. (2019) - BERT: Pre-training of Deep Bidirectional Transformers

Liu et al. (2019) - RoBERTa

Sanh et al. (2019) - DistilBERT

Dao et al. (2022) - FlashAttention

Cognitive Neuroscience:

Hagoort & Indefrey (2014) - The neurobiology of language beyond single words

Kuperberg & Jaeger (2016) - What do we mean by prediction in language
comprehension?

Willems et al (2016) - Prediction during natural language comprehension
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Looking Forward in the Course 

Where do we go from here?

Upcoming Topics:

Week 7: Decoder models and text generation (GPT family)

Week 8: Scaling laws and large language models

Week 9: Prompting, in-context learning, and instruction tuning

Week 10: Alignment, RLHF, and ethical considerations

The Journey Continues:

From understanding (BERT) to generation (GPT)

From supervised learning to few-shot learning

From narrow tasks to general-purpose models
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Questions? 

Discussion Time

Topics to discuss:

BERT applications

Understanding vs. pattern matching

Cognitive neuroscience connections

Limitations and future work

Assignment 4 questions

Thank you! 

See you in Week 7 for GPT and text generation!
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