

Lecture 20: Applications of Encoder Models

Week 6, Lecture 3 - From Theory to Practice

PSYC 51.07: Models of Language and Communication

Winter 2026

Today's Agenda

1. **Real-World Applications:** Where BERT shines
2. **Cognitive Neuroscience:** Brain-model parallels
3. **Understanding vs. Pattern Matching:** The big debate
4. **Limitations:** What BERT can't do
5. **Practical Tips:** Deployment and optimization
6. **Future Directions:** Where are we heading?

Goal: Connect BERT to real applications and understand broader implications

BERT Applications

BERT excels at understanding tasks:

Classification Tasks:

- Sentiment Analysis
- Topic Classification
- Spam Detection
- Intent Recognition

Token-Level Tasks:

- Named Entity Recognition (NER)
- Part-of-Speech Tagging

Case Study: Google Search

BERT revolutionized search in 2019

```
1# Why word order matters: BERT understands prepositions!
2query = "2019 brazil traveler to usa need a visa"
3
4# Before BERT (bag-of-words matching):
5keywords = ["brazil", "traveler", "usa", "visa"]
6# Matches both: "US traveler to Brazil" AND "Brazil traveler to US"
7
8# With BERT (contextual understanding):
9bert_understanding = {
10    "subject": "brazil traveler",           # WHO is traveling
11    "destination": "usa",                  # WHERE they're going
12    "direction": "brazil → usa",          # The preposition "to" is key!
13    "intent": "visa requirements"
14}
15# BERT correctly ranks: "Brazil citizen visa requirements for USA"
```

Question Answering with BERT

Extractive QA: Find answer span in passage

Example

Context: "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France."

Question: "In what country is Normandy located?"

Answer: France

```
1from transformers import pipeline
```

```
2
```

```
3# Load QA pipeline with BERT
```

```
4qa_pipeline = pipeline("question-answering", model="bert-large-uncased-wholeword
```

```
5
```

Named Entity Recognition

Token-level classification task

Example

Input: "Apple Inc. is headquartered in Cupertino, California."

Output:

- Apple Inc. → {ORGANIZATION}
- Cupertino → {LOCATION}
- California → {LOCATION}

```
1from transformers import pipeline
2
3# Load NER pipeline
4ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
5
```

Sentiment Analysis

Sequence classification task

Examples

- "This movie was absolutely amazing!" → {POSITIVE}
- "The product broke after one week." → {NEGATIVE}
- "The weather is cloudy today." → {NEUTRAL}

```
1from transformers import pipeline
2
3# Load sentiment analysis pipeline
4sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-unc
5
6# Analyze sentiments
7texts = [
8    "This movie was absolutely amazing!",
9    "The product broke after one week "
```

Semantic Similarity

Measuring sentence similarity with BERT embeddings

```
1from transformers import BertTokenizer, BertModel
2import torch
3import torch.nn.functional as F
4
5tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
6model = BertModel.from_pretrained('bert-base-uncased')
7
8def get_sentence_embedding(sentence):
9    inputs = tokenizer(sentence, return_tensors='pt', padding=True, truncation=True)
10   outputs = model(**inputs)
11   # Use [CLS] token embedding as sentence representation
12   return outputs.last_hidden_state[:, 0, :]
13
14# Compare sentences
15sent1 = "The cat is sleeping on the couch"
16sent2 = "A feline is resting on the sofa"
```

Semantic Similarity

```
21emb3 = get_sentence_embedding(sent3)
22
23# Compute cosine similarities
24sim_12 = F.cosine_similarity(emb1, emb2).item()
25sim_13 = F.cosine_similarity(emb1, emb3).item()
26
27print(f"Similarity (1-2): {sim_12:.3f}") # High (paraphrases)
28print(f"Similarity (1-3): {sim_13:.3f}") # Low (different topics)
```

...continued

Cognitive Neuroscience Perspective

How do brains and models process language?

Predictive Processing in the Brain:

- Brain constantly predicts upcoming input
- N400: Neural response to unexpected words
- P600: Syntactic anomaly detection
- Context shapes predictions
- Prediction errors drive learning

Key Brain Regions:

- **Left IFG:** Syntax processing
- **Left STG/MTG:** Semantic processing

Prediction in Brains vs. Language Models

Parallels between neural and artificial systems

Phenomenon	Human Brain	Transformer Models
Surprise	N400 amplitude (EEG)	Cross-entropy loss
Hierarchy	sounds → words → sentences	tokens → phrases → meaning
Context	Prior discourse, world knowledge	Self-attention over sequence
Representation	Population coding (neurons)	Distributed embeddings (vectors)

```

1# Concrete example: Surprise/N400 parallel
2sentence_a = "I take my coffee with cream and sugar" # Expected
3sentence_b = "I take my coffee with cream and socks" # Surprising
4

```

Neural Encoding with Language Models

Can we predict brain activity from language models?

```
1# Neural encoding experiment workflow
2import numpy as np
3from transformers import BertModel
4
5# 1. Participant reads sentences while in fMRI scanner
6sentences = ["The dog chased the cat", "She opened the door", ...]
7brain_activity = fmri_scanner.record(sentences) # (n_sentences, n_voxels)
8
9# 2. Extract BERT representations for same sentences
10bert = BertModel.from_pretrained("bert-base-uncased")
11bert_embeddings = []
12for sent in sentences:
13    outputs = bert(tokenizer(sent, return_tensors="pt"))
14    # Use layer 8 (found to correlate best with semantic areas)
15    bert_embeddings.append(outputs.hidden_states[8].mean(dim=1))
16
```

Neural Encoding with Language Models

```
21# 4. Predict brain activity for new sentences
22predictions = encoder.predict(bert_embeddings[80:])
23correlation = np.corrcoef(predictions.flat, brain_activity[80:].flat)[0,1]
24# Correlation ~ 0.3-0.5 in language areas (significant!)
```

...continued

Key finding: BERT layer 8 best predicts semantic areas; layers 2-4 predict phonological areas

Reference: Caucheteux & King (2022) - "Brains and algorithms partially converge"

Discussion: What Does the Model "Understand"? 🤔

Does BERT understand language?

Evidence FOR understanding:

- Captures syntax and semantics
- Resolves ambiguity
- Handles long-range dependencies
- Generalizes to new examples
- Predicts brain activity
- Solves complex tasks

"If it acts like it understands, maybe it does?"

Evidence AGAINST understanding:

Adversarial Examples and Brittleness !

BERT can be fooled easily

```
1from transformers import pipeline
2classifier = pipeline("sentiment-analysis")
3
4# Works correctly
5classifier("This movie was absolutely wonderful!")
6# → [{}'label': 'POSITIVE', 'score': 0.9998}
7
8# Adding irrelevant negative words flips prediction!
9classifier("This movie was absolutely wonderful! [SEP] bad bad bad bad")
10# → [{}'label': 'NEGATIVE', 'score': 0.9234} ] # WRONG!
11
12# Synonym substitution can break it
13classifier("The food was good") # → POSITIVE (0.99)
14classifier("The food was fine") # → POSITIVE (0.72) # Less confident
15classifier("The food was ok") # → NEGATIVE (0.51) # WRONG!
```

Limitations of Current Models !

Despite impressive performance, transformers have limitations:

1. Quadratic Complexity

- Self-attention scales as $O(n^2)$
- Limited context windows (512-4096 tokens)
- Cannot process very long documents efficiently

2. No True Understanding

- Pattern matching vs. comprehension
- Lack of common sense
- No world model

3. Data Efficiency

- Requires massive training data

Bias in Language Models

Models reflect and can amplify societal biases

```
1from transformers import pipeline
2unmasker = pipeline("fill-mask", model="bert-base-uncased")
3
4# Gender bias in occupations
5unmasker("The doctor said [MASK] would be late.")
6# → [('he', 0.62), ('she', 0.18), ('it', 0.08), ...]
7
8unmasker("The nurse said [MASK] would be late.")
9# → [('she', 0.71), ('he', 0.15), ('it', 0.06), ...]
10
11# Racial bias (different sentiment for names)
12classifier = pipeline("sentiment-analysis")
13classifier("Emily is a brilliant scientist.") # POSITIVE: 0.98
14classifier("Jamal is a brilliant scientist.") # POSITIVE: 0.94 # Lower!
15
16# Where does bias come from?
```

Practical Tips for Working with Transformers

1. Start with Pre-trained Models

- Don't train from scratch (too expensive!)

- Use HuggingFace Model Hub
- Choose appropriate model size

2. Fine-tuning Best Practices

- Use small learning rate (1e-5 to 5e-5)
- Add warmup steps
- Monitor for overfitting
- Freeze early layers if data is limited

3. Computational Efficiency

- Use mixed precision training (FP16)

Deployment Considerations

Moving from research to production

```
1# Example: Optimizing BERT for production deployment
2from transformers import BertModel, BertTokenizer
3import torch
4import onnxruntime
5
6# Step 1: Load model
7model = BertModel.from_pretrained("bert-base-uncased")
8tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
9
10# Step 2: Quantize for speed (INT8 instead of FP32)
11quantized_model = torch.quantization.quantize_dynamic(
12    model, {torch.nn.Linear}, dtype=torch.qint8
13)
14# Result: 4x smaller, 2x faster on CPU
15
16# Step 3: Export to ONNX for production
```

Deployment Considerations

```
21session = onnxruntime.InferenceSession("bert.onnx")
22# 1.5x faster than PyTorch, works on any platform
```

...continued

Optimization	Size	Latency	Quality
Original (FP32)	420MB	50ms	100%
Quantized (INT8)	110MB	25ms	99.5%
ONNX + Quantized	110MB	20ms	99.5%
DistilBERT + ONNX	65MB	12ms	97%

Future Directions

Where is the field heading?

1. Longer Context

- Efficient attention mechanisms (linear, sparse)
- Models with 100K+ token context
- Better long-document understanding

2. Multimodal Models

- Vision + Language (CLIP, DALL-E)
- Audio + Language (Whisper)
- Grounded understanding

3. Better Pre-training

- More efficient objectives

Encoder vs Decoder Models Revisited

Different models for different tasks

$p\{4.5cm\}$	Encoder (BERT)	Decoder (GPT)
• Classification		
• NER, QA		
• Similarity	Generation tasks:	
• Text completion		
• Dialogue		
• Creative writing		

Interesting observation:

Winter 2026

- Decoder-only models (GPT, T5, LaMA) can also do classification via prompting!

Discussion Questions

1. Understanding vs. Pattern Matching:

- Where do you draw the line?
- Is there a test for "true" understanding?
- Does it matter for applications?

2. Brain-Model Parallels:

- How useful are these comparisons?
- What can neuroscience learn from AI?
- What can AI learn from neuroscience?

3. Bias and Fairness:

- Who is responsible for addressing bias?

- Can we ever have completely unbiased models?

Assignment 4: Context-Aware Models

Hands-on experience with transformers!

Tasks:

1. Implement Attention Mechanism

- Build scaled dot-product attention from scratch

- Visualize attention weights

2. Fine-tune BERT

- Load pre-trained BERT

- Fine-tune on sentiment analysis

- Compare to baseline models

Summary: Weeks 5-6

What we learned:

1. Evolution of Context

- Seq2Seq → Attention → Transformers
- From bottleneck to full parallelization

2. Transformer Architecture

- Self-attention, multi-head attention
- Positional encoding, layer norm, residuals
- Encoder-only (BERT), Decoder-only (GPT), Both (T5)

3. BERT & Variants

- Masked Language Modeling

Resources & Further Reading

Key Papers:

- Vaswani et al. (2017) - Attention Is All You Need
- Devlin et al. (2019) - BERT: Pre-training of Deep Bidirectional Transformers
- Liu et al. (2019) - RoBERTa
- Sanh et al. (2019) - DistilBERT
- Dao et al. (2022) - FlashAttention

Cognitive Neuroscience:

- Hagoort & Indefrey (2014) - The neurobiology of language beyond single words
- Kuperberg & Jaeger (2016) - What do we mean by prediction in language comprehension?

- Willems et al. (2016) - Prediction during natural language comprehension

Looking Forward in the Course

Where do we go from here?

Upcoming Topics:

- **Week 7:** Decoder models and text generation (GPT family)
- **Week 8:** Scaling laws and large language models
- **Week 9:** Prompting, in-context learning, and instruction tuning
- **Week 10:** Alignment, RLHF, and ethical considerations

The Journey Continues:

- From understanding (BERT) to generation (GPT)
- From supervised learning to few-shot learning

Questions?

Discussion Time

Topics to discuss:

- BERT applications
- Understanding vs. pattern matching
- Cognitive neuroscience connections
- Limitations and future work
- Assignment 4 questions

Thank you!

See you in Week 7 for GPT and text generation!