
Lecture 19: BERT Variants

Week 6, Lecture 2 - Improvements and Optimizations

PSYC 51.07: Models of Language and Communication

Winter 2026

PSYC 51.07: Models of Language and Communication

Winter 2026 1

Today's Agenda

1. RoBERTa: Robustly Optimized BERT

2. ALBERT: A Lite BERT with parameter sharing

3. DistilBERT: Knowledge distillation for efficiency

4. ELECTRA: Replace Token Detection

5. Comparative Analysis: When to use which variant

6. Practical Considerations: Model selection guide

Goal: Understand improvements to BERT and choose the right model

PSYC 51.07: Models of Language and Communication

Winter 2026 2

BERT's Limitations

What could be improved?

1. Training Procedure
Some choices seemed arbitrary

NSP task might not be useful

Static masking (same masks every epoch)

2. Model Size

110M (Base) or 340M (Large) parameters

Large memory footprint

Slow inference

3. Training Efficiency

Only 15% of tokens are predicted

PSYC 51.07: Models of Language and Communication

Winter 2026 3

RoBERTa: Robustly Optimized BERT

Key idea: Better training = Better performance

RoBERTa's Improvements (Liu et al. 2019):

1. Remove NSP Task

Next Sentence Prediction hurt performance

Use only Masked Language Modeling

Full sentences (don't need sentence pairs)

2. Dynamic Masking
Generate masking pattern every time

BERT: static masks (same for every epoch)

More diverse training signal

PSYC 51.07: Models of Language and Communication

Winter 2026 4

RoBERTa Results

Consistent improvements over BERT

SQuAD 2.0 83.1 89.4 +6.3

MNLI 86.7 90.2 +3.5

SST-2 94.9 96.4 +1.5

RACE 72.0 83.2 +11.2

Key Findings:

Dynamic masking better than static

More data + longer training = better results

RoBERTa-Large matches or beats BERT-Large on all tasks

Sometimes huge gains (RACE: +11.2 points!)

PSYC 51.07: Models of Language and Communication

Winter 2026 5

Dynamic vs Static Masking

How masking patterns are generated

Static Masking (BERT):

Preprocessing:

Mask tokens once

Save masked dataset

Same masks every epoch

Epoch 1: "My [MASK] is cute"

Epoch 2: "My [MASK] is cute"

Epoch 3: "My [MASK] is cute"

Problem:

PSYC 51.07: Models of Language and Communication

Winter 2026 6

ALBERT: A Lite BERT

Key idea: Parameter sharing for efficiency

ALBERT's Innovations (Lan et al. 2019):

1. Factorized Embedding

1# BERT: Direct embedding
2# 30K vocab × 768 hidden = 23M params
3bert_embed = nn.Embedding(30000, 768)
4
5# ALBERT: Two-step embedding
6# 30K × 128 + 128 × 768 = 3.8M + 0.1M
7albert_embed = nn.Embedding(30000, 128)
8albert_project = nn.Linear(128, 768)
9# Savings: 83% fewer embedding params!

2. Cross-Layer Sharing

PSYC 51.07: Models of Language and Communication

Winter 2026 7

ALBERT Parameter Efficiency

Dramatic parameter reduction!

ALBERT-base 12 768 12M

ALBERT-large 24 1024 18M

ALBERT-xlarge 24 2048 60M

ALBERT-xxlarge 12 4096 235M

Key Observations:

ALBERT-base: than BERT-base

Can train much larger hidden sizes with same memory

ALBERT-xxlarge: 4096 hidden dim, still only 235M params

Trade-off: fewer params but similar computation (layer sharing)

PSYC 51.07: Models of Language and Communication

Winter 2026 8

Cross-Layer Parameter Sharing

How ALBERT achieves parameter efficiency

BERT (No Sharing):

1class BERT:
2 def __init__(self):
3 # Each layer has unique parameters
4 self.layers = [
5 TransformerLayer() for _ in range(12)
6]
7 # 12 × 7M params = 85M params
8
9 def forward(self, x):
10 for layer in self.layers:
11 x = layer(x) # Different weights
12 return x

ALBERT (F ll Sh i)

PSYC 51.07: Models of Language and Communication

Winter 2026 9

DistilBERT: Knowledge Distillation

Key idea: Train small model to mimic large model

1# Knowledge Distillation Training Loop
2teacher = BertModel.from_pretrained("bert-base") # 12 layers, frozen
3student = DistilBertModel(num_layers=6) # 6 layers, trainable
4
5for batch in training_data:
6 # Teacher provides "soft targets" (probability distributions)
7 with torch.no_grad():
8 teacher_logits = teacher(batch) # e.g., [0.7, 0.2, 0.1, ...]
9
10 # Student tries to match teacher's distribution
11 student_logits = student(batch)
12
13 # Distillation loss: KL divergence between distributions
14 # Temperature T=2 softens the distribution (more informative)
15 loss_distill = KL_divergence(
16 softmax(student logits / T),

PSYC 51.07: Models of Language and Communication

Winter 2026 10

DistilBERT: Knowledge Distillation

21 loss_mlm = masked_lm_loss(student_logits, labels)
22
23 # Combined loss
24 loss = 0.5 * loss_distill + 0.5 * loss_mlm

...continued
Why soft targets work: Teacher's "wrong" predictions contain information (e.g., "dog" →

"cat" more likely than "car")

Reference: Sanh et al. (2019) - "DistilBERT, a distilled version of BERT"

PSYC 51.07: Models of Language and Communication

Winter 2026 11

DistilBERT Results

Significant efficiency gains!

Inference Speed 1x 1.6x 60% faster

GLUE Score 79.6 77.0 97% retained

Performance on Specific Tasks:

SST-2 (Acc) 94.9 92.7

MNLI (Acc) 86.7 82.2

When to Use DistilBERT:

Production deployment (latency-critical)

Edge devices (limited memory)

Hi h th h t i

PSYC 51.07: Models of Language and Communication

Winter 2026 12

ELECTRA: Efficient Learning

Key idea: Learn from all tokens, not just 15%

1# ELECTRA Training: Generator + Discriminator setup
2sentence = "The chef cooked a delicious meal"
3masked = "The chef [MASK] a delicious meal"
4
5# Small generator (like BERT) fills in masks
6generator_output = generator(masked)
7# Generator predicts: "ate" (plausible but wrong)
8
9corrupted = "The chef ate a delicious meal"
10
11# Discriminator classifies EACH token: original or replaced?
12discriminator_output = discriminator(corrupted)
13# Output per token: [orig, orig, REPLACED, orig, orig, orig]
14
15# Loss computed on ALL tokens (not just 15%!)
16labels = [0, 0, 1, 0, 0, 0] # 1 = replaced

PSYC 51.07: Models of Language and Communication

Winter 2026 13

ELECTRA Benefits

More efficient pre-training

Advantages:

1. Sample Efficiency

Learn from all tokens (100%) vs only masked (15%)

Reaches same performance with less data

Faster convergence

2. Better Performance
ELECTRA-Small outperforms BERT-Small

ELECTRA-Base competitive with BERT-Large

With same compute, ELECTRA is better

PSYC 51.07: Models of Language and Communication

Winter 2026 14

BERT Variants Comparison

Summary of key variants

p{3cm}p{3cm}} Model Key Innovation Advantages Best For

General Guidelines:

Best quality: RoBERTa-Large

Best efficiency: DistilBERT

Limited memory: ALBERT

Limited training budget: ELECTRA

Good default: RoBERTa-Base or BERT-Base

PSYC 51.07: Models of Language and Communication

Winter 2026 15

Other Notable BERT Variants

The BERT family keeps growing!

1. DeBERTa (Microsoft, 2020)
Disentangled attention (separate content and position)

Enhanced mask decoder

State-of-the-art on SuperGLUE

2. ERNIE (Baidu, 2019)

Entity-level and phrase-level masking

Knowledge enhancement

Strong on Chinese NLP tasks

3. SpanBERT (Facebook, 2019)

Mask random spans instead of random tokens

PSYC 51.07: Models of Language and Communication

Winter 2026 16

Model Selection Guide

How to choose the right model for your task

1Start -> Quality or Speed? -> RoBERTa-Large -> Memory? -> DistilBERT -> ALBERT

Additional Considerations:

Domain: Consider domain-specific pre-trained models (BioBERT, SciBERT, etc.)

Language: Multilingual? Use mBERT, XLM-R

Task type: Generation? Consider BART/T5 instead

PSYC 51.07: Models of Language and Communication

Winter 2026 17

Using Different BERT Variants

Easy switching with HuggingFace

1from transformers import AutoModel, AutoTokenizer
2
3# BERT
4bert_model = AutoModel.from_pretrained("bert-base-uncased")
5bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
6
7# RoBERTa
8roberta_model = AutoModel.from_pretrained("roberta-base")
9roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-base")
10
11# ALBERT
12albert_model = AutoModel.from_pretrained("albert-base-v2")
13albert_tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
14
15# DistilBERT
16distilbert model = AutoModel.from pretrained("distilbert-base-uncased")

PSYC 51.07: Models of Language and Communication

Winter 2026 18

Using Different BERT Variants

21electra_tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discrim
22
23# All have the same API!
24inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
25outputs = model(**inputs)

...continued

PSYC 51.07: Models of Language and Communication

Winter 2026 19

Benchmarking BERT Variants: Worked Example

Practical comparison on sentiment analysis

1import time
2from transformers import pipeline
3
4# Load different models for sentiment analysis
5models = {
6 "bert-base": "textattack/bert-base-uncased-SST-2",
7 "distilbert": "distilbert-base-uncased-finetuned-sst-2-english",
8 "albert": "textattack/albert-base-v2-SST-2",
9}
10
11test_texts = ["This movie was fantastic!", "I hated every minute of it."] * 10
12
13for name, model_id in models.items():
14 pipe = pipeline("sentiment-analysis", model=model_id)
15
16 start = time.time()

PSYC 51.07: Models of Language and Communication

Winter 2026 20

Discussion Questions

1. Training vs Architecture:

RoBERTa shows training matters. Is architecture overrated?

How much can we improve with just better training?

What's the right balance?

2. Parameter Efficiency:
ALBERT shares all layers. Why does this work?

What are the limits of parameter sharing?

Is there a "sweet spot"?

3. Knowledge Distillation:
Why does student learn better from teacher than from labels?

What information is in the soft probabilities?

PSYC 51.07: Models of Language and Communication

Winter 2026 21

Looking Ahead

Today we learned:

RoBERTa: Better training matters

ALBERT: Parameter sharing for efficiency

DistilBERT: Knowledge distillation

ELECTRA: Replace token detection

How to choose the right variant

Next lecture (Lecture 17 - Applications of Encoder Models):

From theory to practice!

PSYC 51.07: Models of Language and Communication

Winter 2026 22

Summary

Key Takeaways:

1. RoBERTa
Training procedure matters as much as architecture

Remove NSP, dynamic masking, more data = better results

2. ALBERT

Parameter sharing dramatically reduces model size

Factorized embeddings for efficiency

89% fewer parameters than BERT

3. DistilBERT
Knowledge distillation for deployment

40% ll 60% f t 97% f

PSYC 51.07: Models of Language and Communication

Winter 2026 23

References

Essential Papers:

Liu et al. (2019) - "RoBERTa: A Robustly Optimized BERT Pretraining Approach"

Lan et al. (2019) - "ALBERT: A Lite BERT for Self-supervised Learning"

Sanh et al. (2019) - "DistilBERT, a distilled version of BERT"

Clark et al. (2020) - "ELECTRA: Pre-training Text Encoders as Discriminators"

He et al. (2020) - "DeBERTa: Decoding-enhanced BERT with Disentangled
Attention"

Resources:

HuggingFace Model Hub: https://huggingface.co/models

Papers With Code: BERT variants leaderboard

Model Cards: Detailed documentation for each variant

PSYC 51.07: Models of Language and Communication

Winter 2026 24

https://huggingface.co/models

Questions?

Discussion Time

Topics for discussion:

BERT variants and improvements

Model selection strategies

Knowledge distillation

Parameter efficiency

Implementation questions

Thank you!

Next: Applications and Real-World Use Cases!

PSYC 51.07: Models of Language and Communication

Winter 2026 25

