

Lecture 19: BERT Variants

Week 6, Lecture 2 - Improvements and Optimizations

PSYC 51.07: Models of Language and Communication

Winter 2026

Today's Agenda

1. **RoBERTa**: Robustly Optimized BERT
2. **ALBERT**: A Lite BERT with parameter sharing
3. **DistilBERT**: Knowledge distillation for efficiency
4. **ELECTRA**: Replace Token Detection
5. **Comparative Analysis**: When to use which variant
6. **Practical Considerations**: Model selection guide

Goal: Understand improvements to BERT and choose the right model

BERT's Limitations

What could be improved?

1. Training Procedure

- Some choices seemed arbitrary
- NSP task might not be useful
- Static masking (same masks every epoch)

2. Model Size

- 110M (Base) or 340M (Large) parameters
- Large memory footprint
- Slow inference

3. Training Efficiency

- Only 15% of tokens are predicted

RoBERTa: Robustly Optimized BERT

Key idea: Better training = Better performance

RoBERTa's Improvements (Liu et al. 2019):

1. Remove NSP Task

- Next Sentence Prediction hurt performance
- Use only Masked Language Modeling
- Full sentences (don't need sentence pairs)

2. Dynamic Masking

- Generate masking pattern every time
- BERT: static masks (same for every epoch)
- More diverse training signal

RoBERTa Results

Consistent improvements over BERT

SQuAD 2.0	83.1	89.4	+6.3
MNLI	86.7	90.2	+3.5
SST-2	94.9	96.4	+1.5
RACE	72.0	83.2	+11.2

Key Findings:

- Dynamic masking better than static
- More data + longer training = better results
- RoBERTa-Large matches or beats BERT-Large on all tasks
- Sometimes huge gains (RACE: +11.2 points!)

Dynamic vs Static Masking

How masking patterns are generated

Static Masking (BERT):

Preprocessing:

- Mask tokens once
- Save masked dataset
- Same masks every epoch

Epoch 1: "My [MASK] is cute"

Epoch 2: "My [MASK] is cute"

Epoch 3: "My [MASK] is cute"

ALBERT: A Lite BERT

Key idea: Parameter sharing for efficiency

ALBERT's Innovations (Lan et al. 2019):

1. Factorized Embedding

```
1# BERT: Direct embedding
2# 30K vocab × 768 hidden = 23M params
3bert_embed = nn.Embedding(30000, 768)
4
5# ALBERT: Two-step embedding
6# 30K × 128 + 128 × 768 = 3.8M + 0.1M
7albert_embed = nn.Embedding(30000, 128)
8albert_project = nn.Linear(128, 768)
9# Savings: 83% fewer embedding params!
```

ALBERT Parameter Efficiency

Dramatic parameter reduction!

ALBERT-base	12	768	12M
ALBERT-large	24	1024	18M
ALBERT-xlarge	24	2048	60M
ALBERT-xxlarge	12	4096	235M

Key Observations:

- ALBERT-base: than BERT-base
- Can train much larger hidden sizes with same memory
- ALBERT-xxlarge: 4096 hidden dim, still only 235M params
- Trade-off: fewer params but similar computation (layer sharing)

Cross-Layer Parameter Sharing [🔗](#)

How ALBERT achieves parameter efficiency

BERT (No Sharing):

```
1class BERT:
2    def __init__(self):
3        # Each layer has unique parameters
4        self.layers = [
5            TransformerLayer() for _ in range(12)
6        ]
7        # 12 × 7M params = 85M params
8
9    def forward(self, x):
10       for layer in self.layers:
11           x = layer(x) # Different weights
12
13       return x
```

DistilBERT: Knowledge Distillation ⚡

Key idea: Train small model to mimic large model

```
1# Knowledge Distillation Training Loop
2teacher = BertModel.from_pretrained("bert-base")    # 12 layers, frozen
3student = DistilBertModel(num_layers=6)              # 6 layers, trainable
4
5for batch in training_data:
6    # Teacher provides "soft targets" (probability distributions)
7    with torch.no_grad():
8        teacher_logits = teacher(batch)  # e.g., [0.7, 0.2, 0.1, ...]
9
10   # Student tries to match teacher's distribution
11   student_logits = student(batch)
12
13   # Distillation loss: KL divergence between distributions
14   # Temperature T=2 softens the distribution (more informative)
15   loss_distill = KL_divergence(
16       softmax(student_logits / T),
```

DistilBERT: Knowledge Distillation

```
21     loss_mlm = masked_lm_loss(student_logits, labels)
22
23     # Combined loss
24     loss = 0.5 * loss_distill + 0.5 * loss_mlm
```

...continued

Why soft targets work: Teacher's "wrong" predictions contain information (e.g., "dog" → "cat" more likely than "car")

Reference: Sanh et al. (2019) - "DistilBERT, a distilled version of BERT"

DistilBERT Results

Significant efficiency gains!

Inference Speed	1x	1.6x	60% faster
GLUE Score	79.6	77.0	97% retained

Performance on Specific Tasks:

SST-2 (Acc)	94.9	92.7
MNLI (Acc)	86.7	82.2

When to Use DistilBERT:

- Production deployment (latency-critical)
- Edge devices (limited memory)

ELECTRA: Efficient Learning

Key idea: Learn from all tokens, not just 15%

```
1# ELECTRA Training: Generator + Discriminator setup
2sentence = "The chef cooked a delicious meal"
3masked   = "The chef [MASK] a delicious meal"
4
5# Small generator (like BERT) fills in masks
6generator_output = generator(masked)
7# Generator predicts: "ate" (plausible but wrong)
8
9corrupted = "The chef ate a delicious meal"
10
11# Discriminator classifies EACH token: original or replaced?
12discriminator_output = discriminator(corrupted)
13# Output per token: [orig, orig, REPLACED, orig, orig, orig]
14
15# Loss computed on ALL tokens (not just 15%!)
16labels = [0, 0, 1, 0, 0, 0] # 1 = replaced
```

ELECTRA Benefits

More efficient pre-training

Advantages:

1. Sample Efficiency

- Learn from all tokens (100%) vs only masked (15%)
- Reaches same performance with less data
- Faster convergence

2. Better Performance

- ELECTRA-Small outperforms BERT-Small
- ELECTRA-Base competitive with BERT-Large
- With same compute, ELECTRA is better

BERT Variants Comparison

Summary of key variants

p{3cm}p{3cm} Model	Key Innovation	Advantages	Best For
--------------------	----------------	------------	----------

General Guidelines:

- **Best quality:** RoBERTa-Large
- **Best efficiency:** DistilBERT
- **Limited memory:** ALBERT
- **Limited training budget:** ELECTRA
- **Good default:** RoBERTa-Base or BERT-Base

Other Notable BERT Variants

The BERT family keeps growing!

1. DeBERTa (Microsoft, 2020)

- Disentangled attention (separate content and position)
- Enhanced mask decoder
- State-of-the-art on SuperGLUE

2. ERNIE (Baidu, 2019)

- Entity-level and phrase-level masking
- Knowledge enhancement
- Strong on Chinese NLP tasks

3. SpanBERT (Facebook, 2019)

- Mask random spans instead of random tokens

Model Selection Guide

How to choose the right model for your task

1Start -> Quality or Speed? -> RoBERTa-Large -> Memory? -> DistilBERT -> ALBERT

Additional Considerations:

- **Domain:** Consider domain-specific pre-trained models (BioBERT, SciBERT, etc.)
- **Language:** Multilingual? Use mBERT, XLM-R
- **Task type:** Generation? Consider BART/T5 instead

Using Different BERT Variants

Easy switching with HuggingFace

```
1from transformers import AutoModel, AutoTokenizer
2
3# BERT
4bert_model = AutoModel.from_pretrained("bert-base-uncased")
5bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
6
7# RoBERTa
8roberta_model = AutoModel.from_pretrained("roberta-base")
9roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-base")
10
11# ALBERT
12albert_model = AutoModel.from_pretrained("albert-base-v2")
13albert_tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
14
15# DistilBERT
16distilbert_model = AutoModel.from_pretrained("distilbert-base-uncased")
```

Using Different BERT Variants


```
21electra_tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminative")
22
23# All have the same API!
24inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
25outputs = model(**inputs)
```

...continued

Benchmarking BERT Variants: Worked Example

Practical comparison on sentiment analysis

```
1import time
2from transformers import pipeline
3
4# Load different models for sentiment analysis
5models = {
6    "bert-base": "textattack/bert-base-uncased-SST-2",
7    "distilbert": "distilbert-base-uncased-finetuned-sst-2-english",
8    "albert": "textattack/albert-base-v2-SST-2",
9}
10
11test_texts = ["This movie was fantastic!", "I hated every minute of it."] * 10
12
13for name, model_id in models.items():
14    pipe = pipeline("sentiment-analysis", model=model_id)
15
16    start = time.time()
```

Discussion Questions

1. Training vs Architecture:

- RoBERTa shows training matters. Is architecture overrated?
- How much can we improve with just better training?
- What's the right balance?

2. Parameter Efficiency:

- ALBERT shares all layers. Why does this work?
- What are the limits of parameter sharing?
- Is there a "sweet spot"?

3. Knowledge Distillation:

- Why does student learn better from teacher than from labels?
- What information is in the soft probabilities?

Looking Ahead

Today we learned:

- RoBERTa: Better training matters
- ALBERT: Parameter sharing for efficiency
- DistilBERT: Knowledge distillation
- ELECTRA: Replace token detection
- How to choose the right variant

Next lecture (Lecture 17 - Applications of Encoder Models):

From theory to practice!

Summary

Key Takeaways:

1. RoBERTa

- Training procedure matters as much as architecture
- Remove NSP, dynamic masking, more data = better results

2. ALBERT

- Parameter sharing dramatically reduces model size
- Factorized embeddings for efficiency
- 89% fewer parameters than BERT

3. DistilBERT

- Knowledge distillation for deployment

References

Essential Papers:

- **Liu et al. (2019)** - "RoBERTa: A Robustly Optimized BERT Pretraining Approach"
- **Lan et al. (2019)** - "ALBERT: A Lite BERT for Self-supervised Learning"
- **Sanh et al. (2019)** - "DistilBERT, a distilled version of BERT"
- **Clark et al. (2020)** - "ELECTRA: Pre-training Text Encoders as Discriminators"
- **He et al. (2020)** - "DeBERTa: Decoding-enhanced BERT with Disentangled Attention"

Resources:

- HuggingFace Model Hub: <https://huggingface.co/models>
- Papers With Code: BERT variants leaderboard
- Model Cards: Detailed documentation for each variant

Questions?

Discussion Time

Topics for discussion:

- BERT variants and improvements
- Model selection strategies
- Knowledge distillation
- Parameter efficiency
- Implementation questions

Thank you!

Next: Applications and Real-World Use Cases!