
Lecture 18: BERT Deep Dive

Week 6, Lecture 1 - Bidirectional Encoder Representations

PSYC 51.07: Models of Language and Communication

Winter 2026

PSYC 51.07: Models of Language and Communication

Winter 2026 1

Today's Agenda

1. BERT Introduction: What makes it special?

2. Masked Language Modeling: The key training objective

3. BERT Architecture: Model sizes and specifications

4. Pre-training & Fine-tuning: The two-stage paradigm

5. Contextual Embeddings: Seeing polysemy in action

6. Using BERT: Practical code examples

Goal: Deep understanding of BERT and how it revolutionized NLP

PSYC 51.07: Models of Language and Communication

Winter 2026 2

BERT: Bidirectional Encoder Representations

BERT = Encoder-only Transformer

Key Innovation: Masked Language Modeling (MLM)

Traditional Language Models:

Left-to-right (GPT)

Or right-to-left

Can't see full picture

Example:

"The cat sat on the ___"

Only sees left context

BERT (MLM):

PSYC 51.07: Models of Language and Communication

Winter 2026 3

Why BERT Was Revolutionary

Before BERT (2018):

Feature-based approaches (use Word2Vec/GloVe as features)

Task-specific architectures

Limited transfer learning

Unidirectional or shallow bidirectional models

BERT's Contributions:

1. Deep Bidirectionality

True bidirectional context at every layer

Not just concatenating left-to-right and right-to-left

2. Pre-train + Fine-tune Paradigm
Single pre trainedmodel for all tasks

PSYC 51.07: Models of Language and Communication

Winter 2026 4

Masked Language Modeling (MLM)

BERT's Pre-training Objective

Training Procedure:

1. Take a sentence

2. Randomly mask 15% of tokens

3. Of the masked tokens:
80%: Replace with [MASK]

10%: Replace with random word

10%: Keep unchanged

4. Predict the original tokens

Example
Original "M dog is hair "

PSYC 51.07: Models of Language and Communication

Winter 2026 5

MLM Example: Step by Step

Sentence: "The quick brown fox jumps over the lazy dog"

Step 1: Select Tokens (15%)
9 tokens total, mask ~1-2

1tokens = ["The", "quick", "brown", "fox",
2 "jumps", "over", "the", "lazy", "dog"]
3# Randomly select: "quick" (idx 1), "over" (idx 5)

Step 2: Apply 80/10/10 Strategy

1"quick" → 80% → [MASK]
2"over" → 10% → "under" (random)

Step 3: Create Training Example

PSYC 51.07: Models of Language and Communication

Winter 2026 6

Next Sentence Prediction (NSP)

BERT's second pre-training objective (debated usefulness)

Task: Given two sentences A and B, predict if B follows A

Positive Example (IsNext)

Sentence A: "The man went to the store."

Sentence B: "He bought a gallon of milk."

Label: IsNext ✓

Negative Example (NotNext)

Sentence A: "The man went to the store."

Sentence B: "Penguins are flightless birds."

Label: NotNext ✗

PSYC 51.07: Models of Language and Communication

Winter 2026 7

BERT Architecture Variants

BERT-Large 24 1024 16 340M

Architecture Details (BERT-Base):

12 transformer encoder layers

768-dimensional hidden states

12 attention heads per layer (64 dims each)

3072-dimensional feed-forward intermediate size (4x expansion)

Maximum sequence length: 512 tokens

Vocabulary size: 30,000 WordPiece tokens

Special Tokens:

[CLS]: Classification token (first token, used for sequence-level tasks)

PSYC 51.07: Models of Language and Communication

Winter 2026 8

BERT Input Representation

Three types of embeddings are summed:

1# Example: Sentence pair for NSP
2sentence_a = "My dog is cute"
3sentence_b = "He likes playing"
4
5# Tokenization
6tokens = ["[CLS]", "my", "dog", "is", "cute", "[SEP]", "he", "likes", "playing"
7
8# Three embedding types (each is a 768-dim vector):
9token_emb = [E_CLS, E_my, E_dog, E_is, E_cute, E_SEP, E_he, E_likes, E_playin
10segment_emb = [E_A, E_A, E_A, E_A, E_A, E_A, E_B, E_B, E_B,
11position_emb= [E_0, E_1, E_2, E_3, E_4, E_5, E_6, E_7, E_8,
12
13# Final input = token + segment + position (element-wise sum)
14input_embedding = token_emb + segment_emb + position_emb

Three embedding types:

PSYC 51.07: Models of Language and Communication

Winter 2026 9

WordPiece Tokenization: Worked Example

How BERT handles unknown words

1from transformers import BertTokenizer
2tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
3
4# Common words stay intact
5tokenizer.tokenize("The cat sat on the mat")
6# → ['the', 'cat', 'sat', 'on', 'the', 'mat']
7
8# Rare/unknown words get split into subwords
9tokenizer.tokenize("unbelievably")
10# → ['un', '##believable', '##ly'] # "##" means continuation
11
12tokenizer.tokenize("ChatGPT is transformative")
13# → ['chat', '##g', '##pt', 'is', 'transform', '##ative']

Why WordPiece?

PSYC 51.07: Models of Language and Communication

Winter 2026 10

BERT Pre-training

Massive scale pre-training on unlabeled text

Pre-training Data:

BooksCorpus: 800M words (novels, fiction)

English Wikipedia: 2,500M words

Total: 3.3 billion words

Diverse, high-quality text

Training Details:

Batch size: 256 sequences (128,000 tokens)

Training steps: 1M steps

Optimization: Adam (lr=1e-4, warmup=10k steps)

PSYC 51.07: Models of Language and Communication

Winter 2026 11

Fine-tuning BERT

Two-stage process: Pre-train then Fine-tune

Stage 1: Pre-training (done once)

1# Expensive: weeks on TPUs
2# Data: 3.3B words (books + Wikipedia)
3# Task: MLM + NSP
4# Result: General language understanding
5
6model = pretrain_bert(
7 data=["BooksCorpus", "Wikipedia"],
8 steps=1_000_000,
9 hardware="16 TPUs"
10)

Stage 2: Fine-tuning (per task)

PSYC 51.07: Models of Language and Communication

Winter 2026 12

Fine-tuning for Different Tasks

Minimal architecture changes needed!

1. Single Sentence Classification
Input: [CLS] sentence [SEP]

Output: [CLS] representation → classifier

Example: Sentiment analysis

2. Sentence Pair Classification

Input: [CLS] sentence A [SEP] sentence B [SEP]

Output: [CLS] representation → classifier

Example: Natural Language Inference

3. Question Answering

Input: [CLS] question [SEP] passage [SEP]

PSYC 51.07: Models of Language and Communication

Winter 2026 13

Fine-tuning BERT: Code Example

Using HuggingFace Transformers

1from transformers import BertForSequenceClassification, Trainer, TrainingArgume
2
3# Load pre-trained BERT with classification head
4model = BertForSequenceClassification.from_pretrained(
5 'bert-base-uncased',
6 num_labels=2 # Binary classification
7)
8
9# Define training arguments
10training_args = TrainingArguments(
11 output_dir='./results',
12 num_train_epochs=3,
13 per_device_train_batch_size=16,
14 learning_rate=2e-5,
15 warmup_steps=500,
16)

PSYC 51.07: Models of Language and Communication

Winter 2026 14

Fine-tuning BERT: Code Example

21 args=training_args,
22 train_dataset=train_dataset,
23 eval_dataset=eval_dataset,
24)
25
26trainer.train()

...continued
Reference: HuggingFace Course - Chapters 1.5, 7.3

PSYC 51.07: Models of Language and Communication

Winter 2026 15

Contextual Embeddings in Action

Remember "bank"? Let's see BERT handle it!

1from transformers import BertTokenizer, BertModel
2import torch
3
4tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
5model = BertModel.from_pretrained('bert-base-uncased')
6
7# Two different contexts for "bank"
8sent1 = "I deposited money at the bank"
9sent2 = "We sat by the river bank"
10
11# Get embeddings
12def get_embedding(sentence, target_word):
13 inputs = tokenizer(sentence, return_tensors='pt')
14 outputs = model(**inputs)
15 # Find position of target word
16 tokens = tokenizer.tokenize(sentence)

PSYC 51.07: Models of Language and Communication

Winter 2026 16

Contextual Embeddings in Action

21emb2 = get_embedding(sent2, "bank") # River bank
22
23# Compare similarity
24similarity = torch.cosine_similarity(emb1, emb2, dim=0)
25print(f"Similarity: {similarity:.3f}") # Low! (~0.3-0.5)
26# Different contexts → Different embeddings!

...continued

PSYC 51.07: Models of Language and Communication

Winter 2026 17

Visualizing BERT's Contextual Embeddings

Same word, different meanings, different vectors

1# Find nearest neighbors for "bank" in each context
2from sklearn.neighbors import NearestNeighbors
3
4# Financial "bank" context
5neighbors_financial = find_nearest_words(emb1, vocabulary)
6# → ["banks", "financial", "account", "deposit", "loan", "credit"]
7
8# River "bank" context
9neighbors_river = find_nearest_words(emb2, vocabulary)
10# → ["shore", "riverside", "banks", "stream", "water", "edge"]

Concrete Measurements

Word Pair Word2Vec Similarity BERT Similarity

bank (fin) vs bank (river) 1 00 (same vector!) 0 42

PSYC 51.07: Models of Language and Communication

Winter 2026 18

BERT's Impressive Results

State-of-the-art on 11 NLP tasks when released (2018)

SQuAD 2.0 (QA) F1 66.3 83.1

MNLI (NLI) Accuracy 80.6 86.7

SST-2 (Sentiment) Accuracy 93.2 94.9

CoNLL-2003 (NER) F1 92.6 92.8

Key Observations:

Largest gains on tasks requiring understanding (QA, NLI)

Improvements even on well-studied benchmarks

BERT-Large generally better than BERT-Base

Fine-tuning is simple but very effective

PSYC 51.07: Models of Language and Communication

Winter 2026 19

What Does BERT Learn?

Probing BERT's internal representations

Research has shown BERT captures:

1. Syntactic Information

Part-of-speech tags

Constituent structure

Dependency relations

Lower layers encode more syntax

2. Semantic Information

Word sense disambiguation

Semantic roles

Entit t pes

PSYC 51.07: Models of Language and Communication

Winter 2026 20

BERT Layer Analysis

Different layers capture different linguistic properties

1# Probing experiment: Train linear classifiers on each layer's representations
2from transformers import BertModel
3import numpy as np
4
5model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states=Tru
6
7# Get hidden states for all 12 layers
8outputs = model(**inputs)
9hidden_states = outputs.hidden_states # (13 layers: embedding + 12 transformer
10
11# Results from probing studies (Tenney et al., 2019):
12layer_specialization = {
13 "Layers 0-2": ["POS tagging", "Word boundaries"], # Surface
14 "Layers 3-6": ["Parse trees", "Dependencies"], # Syntax
15 "Layers 7-9": ["Semantic roles", "Coreference"], # Semantics
16 "Layers 10-12": ["Task-specific representations"] # Task

PSYC 51.07: Models of Language and Communication

Winter 2026 21

Discussion Questions

1. MLM vs. Autoregressive:

Why is MLM better for understanding tasks?

Can BERT generate text like GPT?

What are the trade-offs?

2. The 80/10/10 Masking Strategy:
Why not just use 100% [MASK]?

What problem does the random replacement solve?

Could we improve this strategy?

3. Pre-training Data:
Why use books and Wikipedia?

Would social media text work as well?

PSYC 51.07: Models of Language and Communication

Winter 2026 22

Looking Ahead

Today we learned:

BERT architecture and innovations

Masked Language Modeling

Pre-training and fine-tuning

Contextual embeddings

What BERT learns

Next lecture (Lecture 16 - BERT Variants):

: Optimized BERT training

: Parameter-efficient BERT

: Smaller, faster BERT

: ELECTRA DeBERTa andmore

PSYC 51.07: Models of Language and Communication

Winter 2026 23

Summary

Key Takeaways:

1. BERT = Encoder-only Transformer
Bidirectional self-attention

Trained with Masked Language Modeling

2. Pre-train + Fine-tune Paradigm

Expensive pre-training on unlabeled data (once)

Cheap fine-tuning on task-specific data (per task)

3. Contextual Embeddings
Different representations based on context

Solves polysemy problem

PSYC 51.07: Models of Language and Communication

Winter 2026 24

References

Essential Papers:

Devlin et al. (2019) - "BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding"

The original BERT paper

Introduced MLM and NSP

\item Tenney et al. (2019) - "BERT Rediscovers the Classical NLP Pipeline"

Analysis of what BERT learns

Layer-wise linguistic properties

\item Clark et al. (2019) - "What Does BERT Look At? An Analysis of BERT's

Attention"

PSYC 51.07: Models of Language and Communication

Winter 2026 25

Questions?

Discussion Time

Topics for discussion:

Masked Language Modeling

Pre-training vs fine-tuning

Contextual embeddings

BERT architecture details

Implementation questions

Thank you!

Next: BERT Variants and Improvements!

PSYC 51.07: Models of Language and Communication

Winter 2026 26

