PSYC 51.07: Models of Language and Communication

Lecture 18: BERT Deep Dive

Week 6, Lecture 1 - Bidirectional Encoder Representations

PSYC 51.07: Models of Language and Communication
Winter 2026

Winter 2026

PSYC 51.07: Models of Language and Communication

Today's Agenda [

1. @ BERT Introduction: What makes it special?

2. ¥ Masked Language Modeling: The key training objective
3. AZ BERT Architecture: Model sizes and specifications

4. ul Pre-training & Fine-tuning: The two-stage paradigm

5. Y Contextual Embeddings: Seeing polysemy in action

6. ™ Using BERT: Practical code examples

Goal: Deep understanding of BERT and how it revolutionized NLP

Winter 2026

PSYC 51.07: Models of Language and Communication

BERT: Bidirectional Encoder Representations @

BERT = Encoder-only Transformer
Key Innovation: Masked Language Modeling (MLM)
Traditional Language Models:
o |Left-to-right (GPT)
e Orright-to-left
e Can't see full picture
Example:

e "Thecatsatonthe

e Only sees left context
Winter 2026
REDRT (M M)

PSYC 51.07: Models of Language and Communication

Why BERT Was Revolutionary %

Before BERT (2018):

o Feature-based approaches (use Word2Vec/GloVe as features)
e Task-specific architectures
e Limited transfer learning

e Unidirectional or shallow bidirectional models
BERT's Contributions:

1. Deep Bidirectionality
o True bidirectional context at every layer

e Not just concatenating left-to-right and right-to-left

winter 2025 Pre-train + Fine-tune Paradigm

P~ *

PSYC 51.07: Models of Language and Communication

Masked Language Modeling (MLM) =

BERT's Pre-training Objective
Training Procedure:

1. Take a sentence
2.Randomly mask 15% of tokens
3. Of the masked tokens:

o 80%: Replace with [MASK]
e 10%: Replace with random word

e 10%: Keep unchanged
4. Predict the original tokens

winteEXaMple

N & e 1MA A

PSYC 51.07: Models of Language and Communication

MLM Example: Step by Step

Sentence: "The quick brown fox jumps over the lazy dog"

Step 1: Select Tokens (15%)
O tokens total, mask ~1-2

ltokens = ["The", "quick", "brown", "fox",
2 Iljumpsll’ Iloverll’ IltheII’ II'LaZyII’ Ildogll]
3# Randomly select: "quick" (idx 1), "over" (idx 5)

Step 2: Apply 80/10/10 Strategy

[MASK]
"under" (random)

-
Y

1"quick" - 80%
2"over" - 10%

Winter 2026 o
Stebp 3: Create Trainina Example

PSYC 51.07: Models of Language and Communication

Next Sentence Prediction (NSP) &

BERT's second pre-training objective (debated usefulness)
Task: Given two sentences A and B, predict if B follows A

Positive Example (IsNext)
Sentence A: "The man went to the store.”

Sentence B: "He bought a gallon of milk."
Label: IsNext v

Negative Example (NotNext)
Sentence A: "The man went to the store.”

Sentence B: "Penguins are flightless birds."

VinelZalel: NotNext X

PSYC 51.07: Models of Language and Communication

BERT Architecture Variants ul

BERT-Large 24 1024 16 340M

Architecture Details (BERT-Base):

e 12 transformer encoder layers

e /68-dimensional hidden states

12 attention heads per layer (64 dims each)
e 3072-dimensional feed-forward intermediate size (4x expansion)
e Maximum sequence length: 512 tokens

e \Vocabulary size: 30,000 WordPiece tokens
Special Tokens:

Viner 2035 [CLS]: Classification token (first token, used for sequence-level tasks)

PSYC 51.07: Models of Language and Communication

BERT Input Representation

Three types of embeddings are summed:

1# Example: Sentence pair for NSP

2sentence_a "My dog 1is cute"

3sentence_b "He likes playing"

4

5# Tokenization

6t0kenS — [“[CLS]“, nmyn’ "dog“, "iS", "Cute", "[SEP]", “he", nlikesu’ uplayingu

7

8# Three embedding types (each is a 768-dim vector):

9token_emb = [E_CLS, E_my, E_dog, E_is, E_cute, E_SEP, E_he, E_likes, E_playin
10segment_emb = [E_A, E_ A, E_A, E_A, E_A, E_A, E B, E_B, E_B,
11lposition_emb= [E_0, E 1, E_2, E 3, E_4, E 5, E 6, E_7, E 8,

12

13# Final input = token + segment + position (element-wise sum)
14input_embedding = token_emb + segment_emb + position_emb
Winter 2026 9

PSYC 51.07: Models of Language and Communication

WordPiece Tokenization: Worked Example &5

How BERT handles unknown words

1from transformers import BertTokenizer

2tokenizer = BertTokenizer.from_pretrained('bert-base-uncased"')
3

4# Common words stay intact

5tokenizer.tokenize("The cat sat on the mat")

6# - ['the', 'cat', 'sat', 'on', 'the', 'mat']

7

8# Rare/unknown words get split into subwords
9tokenizer.tokenize("unbelievably")

10# - ['un', '##believable', '"##ly']l # "##" means continuation
11

12tokenizer.tokenize("ChatGPT is transformative")

13# - ['chat', '##qg', '##pt', 'is', 'transform', '##ative']

VInteA\RPRY WordPiece?

10

PSYC 51.07: Models of Language and Communication

BERT Pre-training ¥

Massive scale pre-training on unlabeled text
Pre-training Data:
e BooksCorpus: SO0M words (novels, fiction)
e English Wikipedia: 2,500M words
e Total: 3.3 billion words

e Diverse, high-quality text
Training Details:

e Batch size: 256 sequences (128,000 tokens)
e Training steps: 1M steps

winter 2095 Optimization: Adam (Ir=1e-4, warmup=10k steps)

11

PSYC 51.07: Models of Language and Communication

Fine-tuning BERT ¥

Two-stage process: Pre-train then Fine-tune

Stage 1: Pre-training (done once)

1# Expensive: weeks on TPUs

2# Data: 3.3B words (books + Wikipedia)
3# Task: MLM + NSP

4# Result: General language understanding
5

omodel = pretrain_bert(

7 data=["BooksCorpus", "Wikipedia"],

3 steps=1_000_000,

9 hardware="16 TPUs"

10)

WmterSZBQge 2: Fine-tuning (per task)

PSYC 51.07: Models of Language and Communication

Fine-tuning for Different Tasks @

Minimal architecture changes needed!

1. Single Sentence Classification
o Input: [CLS] sentence [SEP]

o Output: [CLS] representation = classifier

o Example: Sentiment analysis

2. Sentence Pair Classification
o |nput: [CLS] sentence A [SEP] sentence B [SEP]

e Qutput: [CLS] representation = classifier

o Example: Natural Language Inference

winer 203; QUestion Answering
~ Il TOI C©1 AriAactiAan TCEDT mAacana~nn TCEDT

13

PSYC 51.07: Models of Language and Communication

Fine-tuning BERT: Code Example

Using HuggingFace Transformers

1from transformers import BertForSequenceClassification, Trainer, TrainingArgume
2

3# Load pre-trained BERT with classification head

4model = BertForSequenceClassification.from_pretrained(

5 'bert-base-uncased’,

6 num_labels=2 # Binary classification
7)

8

9# Define training arguments
10training_args = TrainingArguments (
11 output_dir='./results’,

12 num_train_epochs=3,
13 per_device_train_batch_size=16,
14 learning_rate=2e-5,
Winter 2026 warmup_steps=500, 14

16)

PSYC 51.07: Models of Language and Communication

Fine-tuning BERT: Code Example =

21 args=training_args,

22 train_dataset=train_dataset,
23 eval _dataset=eval dataset,
24)

25

26trainer.train()

...continued
Reference: HuggingFace Course - Chapters 1.5, 7.3

Winter 2026

15

PSYC 51.07: Models of Language and Communication

Contextual Embeddings in Action »J

Remember "bank"? Let's see BERT handle it!

1from transformers import BertTokenizer, BertModel

2import torch

3

4tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

5model = BertModel.from_pretrained('bert-base-uncased"')
6
7# Two different contexts for "bank"

8sentl = "I deposited money at the bank"
O9sent2 = "We sat by the river bank"
10

11# Get embeddings
12def get_embedding(sentence, target_word):
13 inputs = tokenizer(sentence, return_tensors='pt"')
14 outputs = model(xxinputs)
Winter 20:26 # Find position of target word
16 tokens = tokenizer.tokenize(sentence)

16

PSYC 51.07: Models of Language and Communication

Contextual Embeddings in Action

21emb2 = get_embedding(sent2, "bank") # River bank

22

23# Compare similarity

24similarity = torch.cosine_similarity(embl, emb2, dim=0)
25print(f"Similarity: {similarity:.3f}") # Low! (~0.3-0.5)
26# Different contexts - Different embeddings'!

...continued

Winter 2026

17

PSYC 51.07: Models of Language and Communication

Visualizing BERT's Contextual Embeddings il

Same word, different meanings, different vectors

1# Find nearest neighbors for "bank'" in each context

2from sklearn.neighbors import NearestNeighbors

3

4# Financial "bank" context

5neighbors_financial = find_nearest_words(embl, vocabulary)

6# - ["banks", "financial", "account", "deposit", "loan", "credit"]
7

8# River "bank" context

9neighbors_river = find_nearest_words(emb2, vocabulary)

10# - ["shore", "riverside", "banks", "stream", "water", "edge"]

Concrete Measurements
Word Pair Word2Vec Similarity BERT Similarity

Winter 2026
Ihanl (fin) vie hanl (riviar) 1 NN (carmn vianantAarl) N N9

PSYC 51.07: Models of Language and Communication

BERT's Impressive Results ~/

State-of-the-art on 11 NLP tasks when released (2018)

SQuUAD 2.0 (QA) F1 66.3 83.1
MNLI (NLI) Accuracy 80.6 86.7
SST-2 (Sentiment) Accuracy 93.2 949
CoNLL-2003 (NER) F1 92.6 9238

Key Observations:

e Largest gains on tasks requiring understanding (QA, NLI)
e Improvements even on well-studied benchmarks

e BERT-Large generally better than BERT-Base

Winter 2026 _,] .) .
e Fine-tuning is simple but very effective

19

PSYC 51.07: Models of Language and Communication

What Does BERT Learn?

Probing BERT's internal representations
Research has shown BERT captures:

1. Syntactic Information
o Part-of-speech tags
e Constituent structure
e Dependency relations
e Lower layers encode more syntax

2.Semantic Information
o Word sense disambiguation

winter 20% S€mantic roles

— 'L |

20

PSYC 51.07: Models of Language and Communication

BERT Layer Analysis il

Different layers capture different linguistic properties

1# Probing experiment: Train linear classifiers on each layer's representations
2from transformers import BertModel

3import numpy as np

4

5model = BertModel.from_pretrained('bert-base-uncased', output_hidden_states=Tru
§)

7# Get hidden states for all 12 layers

8outputs = model(xxinputs)

9hidden_states = outputs.hidden_states # (13 layers: embedding + 12 transformer
10

11# Results from probing studies (Tenney et al., 2019):

12layer_specialization = {

13 "Layers 0-2": ["POS tagging", "Word boundaries"], # Surface
14 "Layers 3-6": ["Parse trees", "Dependencies"], # Syntax
Winter 2856 ""Layers 7-9": ["Semantic roles", "Coreference"], # Semantics 21

16 "Lavers 10-12": ["Task-specific representations"'] # Task

PSYC 51.07: Models of Language and Communication

Discussion Questions

1. MLM vs. Autoregressive:
o Why is MLM better for understanding tasks?

Can BERT generate text like GPT?
e What are the trade-offs?

2. The 80/10/10 Masking Strategy:
o Why not just use 100% [MASK]?

What problem does the random replacement solve?

e Could we improve this strategy?

3. Pre-training Data:
o Why use books and Wikipedia?

Winter 2026

2 \A/lAai1ilA aeAA~AIiAal maAATA FAVE wwiAarl, Ac varallD

22

PSYC 51.07: Models of Language and Communication

Looking Ahead &

Today we learned:

e BERT architecture and innovations
e Masked Language Modeling

e Pre-training and fine-tuning

e Contextual embeddings

What BERT learns

Next lecture (Lecture 16 - BERT Variants):

e : Optimized BERT training
e : Parameter-efficient BERT
e :Smaller, faster BERT

Winter 2026

1 r~oaA"TTmA msN_.nDrhrryyasTm—m ... o

PSYC 51.07: Models of Language and Communication

Summary @

Key Takeaways:

1.BERT = Encoder-only Transformer
o Bidirectional self-attention

e Trained with Masked Language Modeling

2.Pre-train + Fine-tune Paradigm
o Expensive pre-training on unlabeled data (once)

o Cheap fine-tuning on task-specific data (per task)

3. Contextual Embeddings
o Different representations based on context

winter 20% S0lves polysemy problem

24

PSYC 51.07: Models of Language and Communication

.
References ¢

Essential Papers:

e Devlin et al. (2019) - "BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”

e The original BERT paper
e Introduced MLM and NSP
\item Tenney et al. (2019) - "BERT Rediscovers the Classical NLP Pipeline"
o Analysis of what BERT learns
o Layer-wise linguistic properties

\item Clark et al. (2019) - "What Does BERT Look At? An Analysis of BERT's
Winter 2026 Attention"

25

PSYC 51.07: Models of Language and Communication

Questions? L=

Discussion Time

Topics for discussion:
e Masked Language Modeling
e Pre-training vs fine-tuning
e Contextual embeddings

BERT architecture details

e Implementation questions
Thank you! ¢ .,

Next: BERT Variants and Improvements!

Winter 2026

26

