* 2. Include this script: * 3. Create charts with minimal configuration - colors are auto-applied! */ (function() { 'use strict'; // ========================================================================== // READ COLORS FROM CSS CUSTOM PROPERTIES // This ensures chart colors stay in sync with the theme // ========================================================================== /** * Get a CSS custom property value from :root */ function getCSSVar(name, fallback = '') { if (typeof getComputedStyle === 'undefined') return fallback; const value = getComputedStyle(document.documentElement).getPropertyValue(name).trim(); return value || fallback; } /** * Build palette from CSS custom properties (with fallbacks) */ function buildPaletteFromCSS() { return { // Primary brand colors dartmouthGreen: getCSSVar('--dartmouth-green', '#00693e'), textPrimary: getCSSVar('--text-primary', '#0a2518'), textSecondary: getCSSVar('--text-secondary', '#0a3d23'), // Chart colors (from CSS --chart-color-N variables) chartColors: [ getCSSVar('--chart-color-1', '#00693e'), getCSSVar('--chart-color-2', '#267aba'), getCSSVar('--chart-color-3', '#ffa00f'), getCSSVar('--chart-color-4', '#9d162e'), getCSSVar('--chart-color-5', '#8a6996'), getCSSVar('--chart-color-6', '#a5d75f'), getCSSVar('--chart-color-7', '#003c73'), getCSSVar('--chart-color-8', '#d94415'), getCSSVar('--chart-color-9', '#643c20'), getCSSVar('--chart-color-10', '#c4dd88'), getCSSVar('--chart-color-11', '#f5dc69'), getCSSVar('--chart-color-12', '#424141'), ], // Background colors (semi-transparent versions) chartBgColors: [ getCSSVar('--chart-bg-1', 'rgba(0, 105, 62, 0.5)'), getCSSVar('--chart-bg-2', 'rgba(38, 122, 186, 0.5)'), getCSSVar('--chart-bg-3', 'rgba(255, 160, 15, 0.5)'), getCSSVar('--chart-bg-4', 'rgba(157, 22, 46, 0.5)'), getCSSVar('--chart-bg-5', 'rgba(138, 105, 150, 0.5)'), getCSSVar('--chart-bg-6', 'rgba(165, 215, 95, 0.5)'), ], // Semantic colors positive: getCSSVar('--chart-positive', '#00693e'), negative: getCSSVar('--chart-negative', '#9d162e'), neutral: getCSSVar('--chart-neutral', '#424141'), highlight: getCSSVar('--chart-highlight', '#ffa00f'), // Grid and axis colors gridLight: getCSSVar('--chart-grid-light', 'rgba(0, 105, 62, 0.1)'), gridMedium: getCSSVar('--chart-grid-medium', 'rgba(0, 105, 62, 0.15)'), gridDark: getCSSVar('--chart-grid-dark', 'rgba(0, 105, 62, 0.2)'), axisColor: getCSSVar('--chart-axis-color', '#0a2518'), // Font fontFamily: getCSSVar('--chart-font-family', "'Avenir LT Std', 'Avenir', 'Avenir Next', -apple-system, BlinkMacSystemFont, sans-serif"), }; } // Initialize palette (will be populated when DOM is ready) let CDL_PALETTE = null; // For convenience, expose primary chart colors array let CHART_COLORS = null; // ========================================================================== // FONT CONFIGURATION // Responsive font sizes based on typical Marp slide dimensions (1280x720) // ========================================================================== const FONT_CONFIG = { sizes: { title: 22, // Chart title subtitle: 18, // Subtitle legend: 16, // Legend labels axisTitle: 18, // Axis titles axisTicks: 16, // Axis tick labels tooltip: 14, // Tooltip text dataLabels: 14, // Data labels on charts }, weight: { normal: 400, medium: 500, bold: 600, }, }; // ========================================================================== // HELPER FUNCTIONS // ========================================================================== /** * Ensure palette is initialized */ function ensurePalette() { if (!CDL_PALETTE) { CDL_PALETTE = buildPaletteFromCSS(); CHART_COLORS = CDL_PALETTE.chartColors; } return CDL_PALETTE; } /** * Get color for a dataset at given index * Cycles through palette if more datasets than colors */ function getColor(index) { ensurePalette(); return CHART_COLORS[index % CHART_COLORS.length]; } /** * Get color with alpha transparency */ function getColorWithAlpha(color, alpha) { // Handle hex colors if (color.startsWith('#')) { const r = parseInt(color.slice(1, 3), 16); const g = parseInt(color.slice(3, 5), 16); const b = parseInt(color.slice(5, 7), 16); return `rgba(${r}, ${g}, ${b}, ${alpha})`; } // Handle rgba colors if (color.startsWith('rgba')) { return color.replace(/[\d.]+\)$/, `${alpha})`); } return color; } /** * Generate colors for all datasets in chart data * Automatically assigns colors if not specified */ function autoAssignColors(data, chartType) { if (!data || !data.datasets) return data; data.datasets.forEach((dataset, index) => { const baseColor = getColor(index); // Only assign colors if not already specified switch (chartType) { case 'bar': case 'horizontalBar': if (!dataset.backgroundColor) { dataset.backgroundColor = baseColor; } if (!dataset.borderColor) { dataset.borderColor = baseColor; } if (dataset.borderWidth === undefined) { dataset.borderWidth = 2; } break; case 'line': if (!dataset.borderColor) { dataset.borderColor = baseColor; } if (!dataset.backgroundColor) { dataset.backgroundColor = getColorWithAlpha(baseColor, 0.1); } if (dataset.borderWidth === undefined) { dataset.borderWidth = 3; } if (dataset.pointRadius === undefined) { dataset.pointRadius = 6; } if (!dataset.pointBackgroundColor) { dataset.pointBackgroundColor = baseColor; } if (dataset.tension === undefined) { dataset.tension = 0.3; } break; case 'scatter': case 'bubble': if (!dataset.backgroundColor) { dataset.backgroundColor = baseColor; } if (!dataset.borderColor) { dataset.borderColor = baseColor; } if (dataset.pointRadius === undefined) { dataset.pointRadius = 15; } if (dataset.pointHoverRadius === undefined) { dataset.pointHoverRadius = 18; } break; case 'pie': case 'doughnut': case 'polarArea': // For pie charts, we need multiple colors for one dataset if (!dataset.backgroundColor) { const numItems = dataset.data ? dataset.data.length : 6; dataset.backgroundColor = []; for (let i = 0; i < numItems; i++) { dataset.backgroundColor.push(getColor(i)); } } if (!dataset.borderColor) { dataset.borderColor = '#d8d8d8'; // Slide background } if (dataset.borderWidth === undefined) { dataset.borderWidth = 2; } break; case 'radar': if (!dataset.borderColor) { dataset.borderColor = baseColor; } if (!dataset.backgroundColor) { dataset.backgroundColor = getColorWithAlpha(baseColor, 0.2); } if (dataset.borderWidth === undefined) { dataset.borderWidth = 2; } if (dataset.pointRadius === undefined) { dataset.pointRadius = 4; } if (!dataset.pointBackgroundColor) { dataset.pointBackgroundColor = baseColor; } break; default: // Generic color assignment if (!dataset.backgroundColor) { dataset.backgroundColor = baseColor; } if (!dataset.borderColor) { dataset.borderColor = baseColor; } } }); return data; } // ========================================================================== // CHART.JS GLOBAL DEFAULTS // ========================================================================== function applyGlobalDefaults() { if (typeof Chart === 'undefined') { console.warn('Chart.js not loaded. chart-defaults.js requires Chart.js to be loaded first.'); return false; } // Ensure palette is loaded from CSS const palette = ensurePalette(); // Font defaults Chart.defaults.font.family = palette.fontFamily; Chart.defaults.font.size = FONT_CONFIG.sizes.axisTicks; Chart.defaults.color = palette.textPrimary; // Responsive defaults Chart.defaults.responsive = true; Chart.defaults.maintainAspectRatio = false; // Animation (subtle) Chart.defaults.animation.duration = 400; // Plugin defaults // Legend Chart.defaults.plugins.legend.labels.font = { family: palette.fontFamily, size: FONT_CONFIG.sizes.legend, weight: FONT_CONFIG.weight.normal, }; Chart.defaults.plugins.legend.labels.color = palette.textPrimary; Chart.defaults.plugins.legend.labels.usePointStyle = true; Chart.defaults.plugins.legend.labels.padding = 20; // Title Chart.defaults.plugins.title.font = { family: palette.fontFamily, size: FONT_CONFIG.sizes.title, weight: FONT_CONFIG.weight.medium, }; Chart.defaults.plugins.title.color = palette.textPrimary; // Tooltip Chart.defaults.plugins.tooltip.backgroundColor = palette.textPrimary; Chart.defaults.plugins.tooltip.titleFont = { family: palette.fontFamily, size: FONT_CONFIG.sizes.tooltip, weight: FONT_CONFIG.weight.medium, }; Chart.defaults.plugins.tooltip.bodyFont = { family: palette.fontFamily, size: FONT_CONFIG.sizes.tooltip, }; Chart.defaults.plugins.tooltip.cornerRadius = 4; Chart.defaults.plugins.tooltip.padding = 10; // Scale defaults (for cartesian charts) // These need to be applied per-scale type const scaleDefaults = { grid: { color: palette.gridLight, lineWidth: 1, }, border: { color: palette.gridDark, width: 1, }, ticks: { font: { family: palette.fontFamily, size: FONT_CONFIG.sizes.axisTicks, }, color: palette.textPrimary, }, title: { font: { family: palette.fontFamily, size: FONT_CONFIG.sizes.axisTitle, weight: FONT_CONFIG.weight.normal, }, color: palette.textPrimary, }, }; // Apply scale defaults to linear scale if (Chart.defaults.scales && Chart.defaults.scales.linear) { if (Chart.defaults.scales.linear.grid) Object.assign(Chart.defaults.scales.linear.grid, scaleDefaults.grid); if (Chart.defaults.scales.linear.border) Object.assign(Chart.defaults.scales.linear.border, scaleDefaults.border); if (Chart.defaults.scales.linear.ticks) Object.assign(Chart.defaults.scales.linear.ticks, scaleDefaults.ticks); if (Chart.defaults.scales.linear.title) Object.assign(Chart.defaults.scales.linear.title, scaleDefaults.title); } // Apply scale defaults to category scale if (Chart.defaults.scales && Chart.defaults.scales.category) { if (Chart.defaults.scales.category.grid) Object.assign(Chart.defaults.scales.category.grid, scaleDefaults.grid); if (Chart.defaults.scales.category.border) Object.assign(Chart.defaults.scales.category.border, scaleDefaults.border); if (Chart.defaults.scales.category.ticks) Object.assign(Chart.defaults.scales.category.ticks, scaleDefaults.ticks); if (Chart.defaults.scales.category.title) Object.assign(Chart.defaults.scales.category.title, scaleDefaults.title); } // Apply scale defaults to logarithmic scale if (Chart.defaults.scales && Chart.defaults.scales.logarithmic) { if (Chart.defaults.scales.logarithmic.grid) Object.assign(Chart.defaults.scales.logarithmic.grid, scaleDefaults.grid); if (Chart.defaults.scales.logarithmic.border) Object.assign(Chart.defaults.scales.logarithmic.border, scaleDefaults.border); if (Chart.defaults.scales.logarithmic.ticks) Object.assign(Chart.defaults.scales.logarithmic.ticks, scaleDefaults.ticks); if (Chart.defaults.scales.logarithmic.title) Object.assign(Chart.defaults.scales.logarithmic.title, scaleDefaults.title); } // Apply scale defaults to radial scale (for radar charts) if (Chart.defaults.scales && Chart.defaults.scales.radialLinear) { if (Chart.defaults.scales.radialLinear.grid) Chart.defaults.scales.radialLinear.grid.color = palette.gridLight; if (Chart.defaults.scales.radialLinear.angleLines) Chart.defaults.scales.radialLinear.angleLines.color = palette.gridMedium; if (Chart.defaults.scales.radialLinear.pointLabels) { Chart.defaults.scales.radialLinear.pointLabels.font = { family: palette.fontFamily, size: FONT_CONFIG.sizes.axisTicks, }; Chart.defaults.scales.radialLinear.pointLabels.color = palette.textPrimary; } } return true; } // ========================================================================== // CHART WRAPPER FOR AUTO-STYLING // ========================================================================== /** * Wrap the Chart constructor to automatically apply CDL styling */ function wrapChartConstructor() { if (typeof Chart === 'undefined') return; const OriginalChart = Chart; // Create a wrapper that auto-applies colors window.Chart = function(ctx, config) { // Auto-assign colors if not specified if (config && config.data) { config.data = autoAssignColors(config.data, config.type); } // Merge default options for specific chart types if (config && config.options) { config.options = applyChartTypeDefaults(config.type, config.options); } // Call original constructor return new OriginalChart(ctx, config); }; // Copy static properties and methods Object.setPrototypeOf(window.Chart, OriginalChart); Object.assign(window.Chart, OriginalChart); // Preserve the prototype chain window.Chart.prototype = OriginalChart.prototype; } /** * Apply chart-type specific defaults */ function applyChartTypeDefaults(chartType, userOptions) { const options = { ...userOptions }; switch (chartType) { case 'bar': case 'horizontalBar': // Bar chart defaults if (!options.scales) options.scales = {}; if (!options.scales.x) options.scales.x = {}; if (!options.scales.y) options.scales.y = {}; // Hide x-axis grid for cleaner look if (options.scales.x.grid === undefined) { options.scales.x.grid = { display: false }; } break; case 'line': // Line chart defaults if (!options.interaction) { options.interaction = { intersect: false, mode: 'index' }; } break; case 'pie': case 'doughnut': // Pie/doughnut defaults if (!options.plugins) options.plugins = {}; if (options.plugins.legend === undefined) { const palette = ensurePalette(); options.plugins.legend = { position: 'right', labels: { font: { family: palette.fontFamily, size: FONT_CONFIG.sizes.legend, }, color: palette.textPrimary, padding: 15, }, }; } break; case 'radar': // Radar chart defaults - keep as-is, scale defaults applied globally break; case 'scatter': case 'bubble': // Scatter/bubble defaults if (!options.scales) options.scales = {}; if (!options.scales.x) options.scales.x = {}; if (!options.scales.y) options.scales.y = {}; break; } return options; } // ========================================================================== // CONVENIENCE FUNCTIONS FOR USERS // Exposed on window.CDLChart for easy access // ========================================================================== window.CDLChart = { // Color palette access (getters to ensure lazy initialization) get colors() { return ensurePalette().chartColors; }, get palette() { return ensurePalette(); }, // Get specific color by index getColor: getColor, // Get color with transparency getColorWithAlpha: getColorWithAlpha, // Get array of colors for a specific count getColors: function(count) { ensurePalette(); const result = []; for (let i = 0; i < count; i++) { result.push(getColor(i)); } return result; }, // Font configuration fonts: FONT_CONFIG, // Quick chart creation helpers // These create minimal config that auto-applies all styling /** * Create a simple bar chart * @param {string} canvasId - Canvas element ID * @param {string[]} labels - X-axis labels * @param {number[]} data - Data values * @param {object} options - Optional overrides */ bar: function(canvasId, labels, data, options = {}) { return new Chart(document.getElementById(canvasId), { type: 'bar', data: { labels: labels, datasets: [{ data: data }], }, options: { plugins: { legend: { display: false } }, ...options, }, }); }, /** * Create a simple line chart * @param {string} canvasId - Canvas element ID * @param {string[]} labels - X-axis labels * @param {Array} datasets - Array of {label, data} objects * @param {object} options - Optional overrides */ line: function(canvasId, labels, datasets, options = {}) { return new Chart(document.getElementById(canvasId), { type: 'line', data: { labels: labels, datasets: datasets.map(ds => ({ label: ds.label, data: ds.data, fill: ds.fill !== undefined ? ds.fill : true, })), }, options: options, }); }, /** * Create a simple pie chart * @param {string} canvasId - Canvas element ID * @param {string[]} labels - Slice labels * @param {number[]} data - Data values * @param {object} options - Optional overrides */ pie: function(canvasId, labels, data, options = {}) { return new Chart(document.getElementById(canvasId), { type: 'pie', data: { labels: labels, datasets: [{ data: data }], }, options: options, }); }, /** * Create a simple scatter chart * @param {string} canvasId - Canvas element ID * @param {Array} datasets - Array of {label, data: [{x, y}]} objects * @param {object} options - Optional overrides */ scatter: function(canvasId, datasets, options = {}) { return new Chart(document.getElementById(canvasId), { type: 'scatter', data: { datasets: datasets.map(ds => ({ label: ds.label, data: ds.data, })), }, options: options, }); }, /** * Create a doughnut chart * @param {string} canvasId - Canvas element ID * @param {string[]} labels - Slice labels * @param {number[]} data - Data values * @param {object} options - Optional overrides */ doughnut: function(canvasId, labels, data, options = {}) { return new Chart(document.getElementById(canvasId), { type: 'doughnut', data: { labels: labels, datasets: [{ data: data }], }, options: options, }); }, /** * Create a radar chart * @param {string} canvasId - Canvas element ID * @param {string[]} labels - Axis labels * @param {Array} datasets - Array of {label, data} objects * @param {object} options - Optional overrides */ radar: function(canvasId, labels, datasets, options = {}) { return new Chart(document.getElementById(canvasId), { type: 'radar', data: { labels: labels, datasets: datasets.map(ds => ({ label: ds.label, data: ds.data, })), }, options: options, }); }, }; // ========================================================================== // INITIALIZATION // ========================================================================== function initialize() { // Wait for Chart.js to be available if (typeof Chart !== 'undefined') { applyGlobalDefaults(); wrapChartConstructor(); console.log('CDL Chart defaults applied successfully.'); return true; } else { // Chart.js not yet loaded - wait and retry let retries = 0; const maxRetries = 50; // 5 seconds max wait const checkInterval = setInterval(function() { retries++; if (typeof Chart !== 'undefined') { clearInterval(checkInterval); applyGlobalDefaults(); wrapChartConstructor(); console.log('CDL Chart defaults applied successfully (after waiting for Chart.js).'); } else if (retries >= maxRetries) { clearInterval(checkInterval); console.warn('Chart.js not found after waiting. CDL Chart defaults not applied.'); } }, 100); return false; } } // Initialize IMMEDIATELY - this must run BEFORE any chart creation scripts // Chart.js CDN should be loaded before this script initialize(); })();
Step-by-step computation with concrete example:
Input: 3 tokens, embedding dim = 4
1# Input embeddings (3 tokens x 4 dims)
2X = [[0.1, 0.2, 0.3, 0.4], # "The"
3 [0.5, 0.6, 0.7, 0.8], # "cat"
4 [0.2, 0.3, 0.4, 0.5]] # "sat"
5
6# Step 1: Compute Q, K, V (using learned weights W_q, W_k, W_v)
7Q = X @ W_q # [3 x 4]
8K = X @ W_k # [3 x 4]
9V = X @ W_v # [3 x 4]
10
11# Step 2: Compute attention scores
12scores = Q @ K.T # [3 x 3] - each token vs each token
13
14# Step 3: Scale by sqrt(d_k) to prevent large values
15scores = scores / sqrt(4) # divide by 2
16
17# Step 4: Softmax to get attention weights
18weights = softmax(scores) # rows sum to 1
19
20# Step 5: Weighted sum of values
21output = weights @ V # [3 x 4] - new contextual embeddings
Sentence: "The animal didn't cross the street because it was too tired"
Question: What does "it" refer to?
1Attention weights when processing "it":
2
3 The animal didn't cross the street because it was too tired
4"it" → 0.02 [0.45] 0.03 0.05 0.02 0.08 0.05 0.15 0.05 0.02 0.08
5 ↑
6 High attention to "animal" - model learns coreference!
Self-attention allows the model to:
For sentence: "The cat sat on the mat"
| To |
The | cat | sat | on | the | mat |
|---|---|---|---|---|---|---|
| From |
||||||
| cat | 0.1 | 0.5 | 0.2 | 0.1 | 0.05 | 0.05 |
| sat | 0.05 | 0.3 | 0.4 | 0.15 | 0.05 | 0.05 |
| on | 0.05 | 0.1 | 0.2 | 0.3 | 0.1 | 0.25 |
| the | 0.05 | 0.05 | 0.05 | 0.1 | 0.3 | 0.45 |
| mat | 0.05 | 0.05 | 0.1 | 0.2 | 0.2 | 0.4 |
Observations:
Why use multiple attention heads?
Intuition:
Formula:
1# Each head has its own W_Q, W_K, W_V
2head_1 = Attention(Q @ W1_Q, K @ W1_K, V @ W1_V)
3head_2 = Attention(Q @ W2_Q, K @ W2_K, V @ W2_V)
4# ... more heads ...
5
6# Concatenate and project
7output = concat(head_1, head_2, ...) @ W_O
Concrete Example:
1Sentence: "The cat sat on the mat"
2
3Head 1 (syntax):
4 "sat" → "cat" (subject-verb)
5 "mat" → "the" (determiner)
6
7Head 2 (semantics):
8 "sat" → "mat" (action-location)
9 "cat" → "sat" (agent-action)
10
11Head 3 (position):
12 Each word → neighbors
BERT-base: 12 heads, BERT-large: 16 heads, GPT-3: 96 heads!
Example: Different heads learn different patterns
Sentence: "The cat sat on the mat"
Head 1: Syntactic Dependencies
Head 2: Semantic Relations
Head 3: Local Context
Head 4: Long-Range
Multiple heads provide a richer, more diverse representation by attending to different aspects of the input simultaneously!
| Masked Self-Attention | Sequence | Same sequence (past only) |
|---|---|---|
| Cross-Attention | Decoder | Encoder |
Preventing the model from "cheating" during generation
Problem: During training, we have the full target sequence. Without masking, the model could "peek" at future tokens!
Solution: Mask out future positions by setting attention scores to -infinity before softmax.
1# Example: Generating "The cat sat"
2# When predicting "sat", model should only see "The cat"
3
4scores = [[0.5, 0.3, 0.2], # "The" can see: The
5 [0.4, 0.5, 0.1], # "cat" can see: The, cat
6 [0.2, 0.4, 0.4]] # "sat" can see: The, cat, sat
7
8# Apply causal mask (upper triangle = -infinity)
9mask = [[ 0, -inf, -inf],
10 [ 0, 0, -inf],
11 [ 0, 0, 0 ]]
12
13masked_scores = scores + mask
14# After softmax: future positions get weight 0!
Result: Token at position t can only attend to positions <= t
Connecting encoder and decoder in seq2seq models
1Encoder Outputs -> (Keys & Values) -> Decoder State -> (Queries) -> Cross-Attention -> Context-Aware Decoder
Key Properties:
Used in: Machine translation, summarization, any encoder-decoder task
Scaled dot-product attention
1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4import math
5
6class SelfAttention(nn.Module):
7 def __init__(self, embed_dim):
8 super().__init__()
9 self.embed_dim = embed_dim
10 self.W_q = nn.Linear(embed_dim, embed_dim)
11 self.W_k = nn.Linear(embed_dim, embed_dim)
12 self.W_v = nn.Linear(embed_dim, embed_dim)
13
14 def forward(self, x, mask=None):
15 Q = self.W_q(x) # Queries: what am I looking for?
16 K = self.W_k(x) # Keys: what do I contain?
17 V = self.W_v(x) # Values: what info do I provide?
18
19 # Attention scores: how similar are Q and K?
20 scores = torch.matmul(Q, K.transpose(-2, -1))
21 scores = scores / math.sqrt(self.embed_dim) # Scale!
22
23 if mask is not None: # For causal/decoder attention
24 scores = scores.masked_fill(mask == 0, -1e9)
25
26 attn_weights = F.softmax(scores, dim=-1) # Normalize
27 output = torch.matmul(attn_weights, V) # Weighted sum
28
29 return output, attn_weights
30
31# Usage example:
32attn = SelfAttention(embed_dim=64)
33x = torch.randn(1, 5, 64) # 5 tokens, 64-dim embeddings
34out, weights = attn(x)
35# out: [1, 5, 64] - contextualized embeddings
36# weights: [1, 5, 5] - attention matrix
Understanding the cost of self-attention
| Component | Time Complexity | Memory |
|---|---|---|
| Self-Attention | O(n^2 * d) | O(n^2) |
| Feed-Forward | O(n * d^2) | O(d) |
where n = sequence length, d = embedding dimension
Sequence length n = 1000 tokens, d = 768 (BERT-base)
Attention matrix size: n x n = 1000 x 1000 = 1 million entries
At fp32 (4 bytes): 4 MB per layer, per head
BERT-base: 12 layers x 12 heads = 144 attention matrices
Total: 576 MB just for attention weights!
If n = 10,000: 100x more = 57.6 GB (won't fit on most GPUs!)
Typical context limits:
What's Next?
Today we learned:
Next lecture (Lecture 14 - Training Transformers):
We're building up to BERT and GPT!
Key Takeaways:
Self-attention is the foundation of modern NLP!
Essential Papers:
Vaswani et al. (2017) - "Attention Is All You Need"
The original Transformer paper
Introduced self-attention, multi-head attention
Foundation of modern NLP
\item Bahdanau et al. (2015) - "Neural Machine Translation by Jointly Learning to Align and Translate"
Tutorials and Resources:
The Illustrated Transformer by Jay Alammar
Visual step-by-step explanation
\item Annotated Transformer by Harvard NLP
Line-by-line implementation
\item HuggingFace Course - Chapter 1.4
Discussion Time
Topics for discussion:
Thank you!
Next: Training Transformers!