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Today's Agenda 

1. The Context Problem: Why static embeddings aren't enough

2. Sequence-to-Sequence Models: The foundation

3. The Bottleneck Problem: Why vanilla Seq2Seq struggles

4. Attention Mechanisms: The breakthrough innovation

5. How Attention Works: Step-by-step computation

6. Visualizing Attention: Interpreting the weights

Goal: Understand why and how attention revolutionized NLP
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The Context Problem 

Why do we need context-aware models?

Example: The word "bank"
1. "I deposited money at the bank" (financial institution)

2. "We sat by the river bank" (riverside)

3. "The plane started to bank left" (tilt/turn)

Static Embeddings (Word2Vec):

One vector per word

Context-independent

"bank" = [0.2, -0.5, 0.8, ...] always

Context-Aware Models:
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Sequence-to-Sequence Models 

The breakthrough for variable-length input/output problems

Applications:

Machine Translation: English → French

Summarization: Long text → Short summary

Question Answering: Question + Context → Answer

Dialogue Systems: User input → System response

Concrete Example: Machine Translation

Input: "The cat sat on the mat" (6 tokens)
Output: "Le chat s'est assis sur le tapis" (7 tokens)

Different input/output lengths require flexible architecture!

R f S t k t l (2014) "S t S L i g ith N l
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Encoder-Decoder Architecture 

Two-part architecture: Encode then Decode

Encoder:

Reads input sequence

Compresses to fixed-size vector

Captures semantic meaning

Decoder:

Starts from context vector

Generates output sequence

One token at a time

Worked Example:
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The Seq2Seq Bottleneck Problem 

Challenge: All information compressed into single vector!

The Problem
Long sequences → information loss

Fixed-size context vector is a bottleneck

Early tokens forgotten by the time we reach the end

Performance degrades with sequence length

Concrete Example: Long Sentence Translation

Input (20 words): "The quick brown fox jumps over the lazy dog while the cat watches
from the warm sunny windowsill nearby"

Problem: All 20 words must fit into one 256-dim vector!

Early words ("The quick brown") get overwritten
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Attention Mechanism: The Big Idea 

Instead of compressing everything into one vector...

Let the decoder look at all encoder hidden states!

1$h_1$ -> $h_2$ -> $h_3$ -> $h_4$ -> Encoder: -> $s_t$ -> Decoder: -> Input: "Th

Key Insight: When generating "chat" (cat), pay more attention to "cat" in the input!

Reference: Bahdanau et al. (2015) - "Neural Machine Translation by Jointly Learning to

Align and Translate"
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How Attention Works: Step by Step 

Computing attention weights:

1. Score: How relevant is each encoder state to current decoder state?

e_{t,i} = score(s_t, h_i) = s_t^T W_a h_i

2. Normalize: Convert scores to probabilities (softmax)

alpha_{t,i} = exp(e_{t,i}) / sum_ j exp(e_{t,j})

3. Context: Weighted sum of encoder states

c_t = sum_i alpha_{t,i} * h_i

4. Decode: Use context vector along with decoder state

s_{t+1} = f(s_t, c_t, y_t)

Result: Decoder dynamically focuses on different parts of input!
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Worked Example: Attention Computation 

Translating "I love cats" → "J'aime les chats"

Step 1: Encoder produces hidden states

1h₁ = [0.2, 0.8]  ("I")
2h₂ = [0.9, 0.3]  ("love")
3h₃ = [0.4, 0.7]  ("cats")

Step 2: When generating "chats", compute scores

Decoder state s = [0.5, 0.6]

Score with h₁: s · h₁ = 0.5×0.2 + 0.6×0.8 = 0.58

Score with h₂: s · h₂ = 0.5×0.9 + 0.6×0.3 = 0.63

Score with h₃: s · h₃ = 0.5×0.4 + 0.6×0.7 = 0.62
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Attention Score Functions 

Different ways to compute the score

1. Additive (Bahdanau):

1# score = v^T * tanh(W1*s + W2*h)
2score = v @ tanh(W1 @ s + W2 @ h)

More parameters, flexible

2. Multiplicative (Luong):

1# score = s^T * W * h
2score = s @ W @ h

Simpler, faster
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Attention Visualization 

Example: English → French translation with attention weights

Input: "The European Economic Area"
Output: "La zone economique europeenne"

1              The    European  Economic   Area
2La           [0.8]    0.1       0.05      0.05
3zone         0.05    [0.1]      0.1      [0.75]  ← "zone" = "Area"
4economique   0.05     0.1      [0.8]      0.05
5europeenne   0.05    [0.8]      0.1       0.05   ← reordering!

Observations:

Diagonal pattern for similar word order

Model learns alignment automatically!
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Benefits of Attention Mechanisms 

1. Solves the Bottleneck Problem

Decoder has access to all encoder states

No information compression into single vector

Works well for long sequences

2. Improves Performance
Better BLEU scores on translation tasks

Handles long-range dependencies

More robust to sequence length

3. Provides Interpretability
Can visualize what the model focuses on

Helps debug and understandmodel behavior
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Real-World Impact of Attention 

Attention mechanisms revolutionized multiple domains:

Machine Translation:

Google Translate (2016)

DeepL

Facebook translations

Dramatic quality improvements

Text Summarization:

News article summarization

Document understanding

Email auto-responses
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Implementing Attention in PyTorch 

Simple attention mechanism implementation

1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4
5class BahdanauAttention(nn.Module):
6    def __init__(self, hidden_dim):
7        super().__init__()
8        self.W_dec = nn.Linear(hidden_dim, hidden_dim)
9        self.W_enc = nn.Linear(hidden_dim, hidden_dim)
10        self.v = nn.Linear(hidden_dim, 1)
11
12    def forward(self, decoder_hidden, encoder_outputs):
13        # Compute scores: how relevant is each encoder state?
14        dec = self.W_dec(decoder_hidden).unsqueeze(1)  # [batch, 1, hidden]
15        enc = self.W_enc(encoder_outputs)              # [batch, seq_len, hidd
16        scores = self.v(torch.tanh(dec + enc))         # [batch, seq len, 1]
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Implementing Attention in PyTorch 

21        # Weighted sum of encoder outputs
22        context = torch.sum(attn_weights * encoder_outputs, dim=1)
23
24        return context, attn_weights.squeeze(-1)

...continued
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Using the Attention Module 

Complete example with sample data

1# Initialize attention module
2attn = BahdanauAttention(hidden_dim=64)
3
4# Sample encoder outputs (3 words, 64-dim hidden state)
5encoder_outputs = torch.randn(1, 3, 64)  # [batch=1, seq_len=3, hidden=64]
6
7# Current decoder hidden state
8decoder_hidden = torch.randn(1, 64)      # [batch=1, hidden=64]
9
10# Compute attention
11context, weights = attn(decoder_hidden, encoder_outputs)
12
13print(f"Context shape: {context.shape}")    # [1, 64]
14print(f"Attention weights: {weights}")       # [1, 3] - sums to 1.0!
15
16# Example output:
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Discussion Questions 

1. Why is attention called "soft alignment"?

How is it different from hard alignment?

What are the advantages of soft vs. hard?

2. Computational Cost:
What is the time complexity of attention?

How does it scale with sequence length?

When might this be a problem?

3. Interpretability:

Can we always trust attention weights as explanations?

What about when attention is uniform across all inputs?

4 B d S 2S
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Looking Ahead 

What's Next?

Today we learned:

The context problem in NLP

Sequence-to-sequence architecture

The bottleneck problem

How attention mechanisms work

Attention as alignment and interpretation

Next lecture (Lecture 13):

: Attention within a sequence

: "Attention is All You Need"

PSYC 51.07: Models of Language and Communication

Winter 2026 18



Summary 

Key Takeaways:

1. Context Matters
Static embeddings can't capture context-dependent meanings

Need dynamic representations based on context

2. Seq2Seq Bottleneck

Fixed-size context vector limits performance

Information loss for long sequences

3. Attention is the Solution
Dynamic access to all encoder states

Weighted combination based on relevance

Att ti i ht t 1 0 ( b bilit di t ib ti )
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Questions? 

Discussion Time

Office Hours Topics:

Implementing attention from scratch

Different attention mechanisms

Debugging attention-based models

Assignment 4 preparation

Thank you! 

See you next lecture for Transformers!
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