
Lecture 15: Attention Mechanisms

Week 5, Lecture 1 - From Seq2Seq to Attention

PSYC 51.07: Models of Language and Communication

Winter 2026

PSYC 51.07: Models of Language and Communication

Winter 2026 1

Today's Agenda

1. The Context Problem: Why static embeddings aren't enough

2. Sequence-to-Sequence Models: The foundation

3. The Bottleneck Problem: Why vanilla Seq2Seq struggles

4. Attention Mechanisms: The breakthrough innovation

5. How Attention Works: Step-by-step computation

6. Visualizing Attention: Interpreting the weights

Goal: Understand why and how attention revolutionized NLP

PSYC 51.07: Models of Language and Communication

Winter 2026 2

The Context Problem

Why do we need context-aware models?

Example: The word "bank"
1. "I deposited money at the bank" (financial institution)

2. "We sat by the river bank" (riverside)

3. "The plane started to bank left" (tilt/turn)

Static Embeddings (Word2Vec):

One vector per word

Context-independent

"bank" = [0.2, -0.5, 0.8, ...] always

Context-Aware Models:

PSYC 51.07: Models of Language and Communication

Winter 2026 3

Sequence-to-Sequence Models

The breakthrough for variable-length input/output problems

Applications:

Machine Translation: English → French

Summarization: Long text → Short summary

Question Answering: Question + Context → Answer

Dialogue Systems: User input → System response

Concrete Example: Machine Translation

Input: "The cat sat on the mat" (6 tokens)
Output: "Le chat s'est assis sur le tapis" (7 tokens)

Different input/output lengths require flexible architecture!

R f S t k t l (2014) "S t S L i g ith N l

PSYC 51.07: Models of Language and Communication

Winter 2026 4

Encoder-Decoder Architecture

Two-part architecture: Encode then Decode

Encoder:

Reads input sequence

Compresses to fixed-size vector

Captures semantic meaning

Decoder:

Starts from context vector

Generates output sequence

One token at a time

Worked Example:

PSYC 51.07: Models of Language and Communication

Winter 2026 5

The Seq2Seq Bottleneck Problem

Challenge: All information compressed into single vector!

The Problem
Long sequences → information loss

Fixed-size context vector is a bottleneck

Early tokens forgotten by the time we reach the end

Performance degrades with sequence length

Concrete Example: Long Sentence Translation

Input (20 words): "The quick brown fox jumps over the lazy dog while the cat watches
from the warm sunny windowsill nearby"

Problem: All 20 words must fit into one 256-dim vector!

Early words ("The quick brown") get overwritten

PSYC 51.07: Models of Language and Communication

Winter 2026 6

Attention Mechanism: The Big Idea

Instead of compressing everything into one vector...

Let the decoder look at all encoder hidden states!

1h_1 -> h_2 -> h_3 -> h_4 -> Encoder: -> s_t -> Decoder: -> Input: "Th

Key Insight: When generating "chat" (cat), pay more attention to "cat" in the input!

Reference: Bahdanau et al. (2015) - "Neural Machine Translation by Jointly Learning to

Align and Translate"

PSYC 51.07: Models of Language and Communication

Winter 2026 7

How Attention Works: Step by Step

Computing attention weights:

1. Score: How relevant is each encoder state to current decoder state?

e_{t,i} = score(s_t, h_i) = s_t^T W_a h_i

2. Normalize: Convert scores to probabilities (softmax)

alpha_{t,i} = exp(e_{t,i}) / sum_ j exp(e_{t,j})

3. Context: Weighted sum of encoder states

c_t = sum_i alpha_{t,i} * h_i

4. Decode: Use context vector along with decoder state

s_{t+1} = f(s_t, c_t, y_t)

Result: Decoder dynamically focuses on different parts of input!

PSYC 51.07: Models of Language and Communication

Winter 2026 8

Worked Example: Attention Computation

Translating "I love cats" → "J'aime les chats"

Step 1: Encoder produces hidden states

1h₁ = [0.2, 0.8] ("I")
2h₂ = [0.9, 0.3] ("love")
3h₃ = [0.4, 0.7] ("cats")

Step 2: When generating "chats", compute scores

Decoder state s = [0.5, 0.6]

Score with h₁: s · h₁ = 0.5×0.2 + 0.6×0.8 = 0.58

Score with h₂: s · h₂ = 0.5×0.9 + 0.6×0.3 = 0.63

Score with h₃: s · h₃ = 0.5×0.4 + 0.6×0.7 = 0.62

PSYC 51.07: Models of Language and Communication

Winter 2026 9

Attention Score Functions

Different ways to compute the score

1. Additive (Bahdanau):

1# score = v^T * tanh(W1*s + W2*h)
2score = v @ tanh(W1 @ s + W2 @ h)

More parameters, flexible

2. Multiplicative (Luong):

1# score = s^T * W * h
2score = s @ W @ h

Simpler, faster

PSYC 51.07: Models of Language and Communication

Winter 2026 10

Attention Visualization

Example: English → French translation with attention weights

Input: "The European Economic Area"
Output: "La zone economique europeenne"

1 The European Economic Area
2La [0.8] 0.1 0.05 0.05
3zone 0.05 [0.1] 0.1 [0.75] ← "zone" = "Area"
4economique 0.05 0.1 [0.8] 0.05
5europeenne 0.05 [0.8] 0.1 0.05 ← reordering!

Observations:

Diagonal pattern for similar word order

Model learns alignment automatically!

PSYC 51.07: Models of Language and Communication

Winter 2026 11

Benefits of Attention Mechanisms

1. Solves the Bottleneck Problem

Decoder has access to all encoder states

No information compression into single vector

Works well for long sequences

2. Improves Performance
Better BLEU scores on translation tasks

Handles long-range dependencies

More robust to sequence length

3. Provides Interpretability
Can visualize what the model focuses on

Helps debug and understandmodel behavior

PSYC 51.07: Models of Language and Communication

Winter 2026 12

Real-World Impact of Attention

Attention mechanisms revolutionized multiple domains:

Machine Translation:

Google Translate (2016)

DeepL

Facebook translations

Dramatic quality improvements

Text Summarization:

News article summarization

Document understanding

Email auto-responses

PSYC 51.07: Models of Language and Communication

Winter 2026 13

Implementing Attention in PyTorch

Simple attention mechanism implementation

1import torch
2import torch.nn as nn
3import torch.nn.functional as F
4
5class BahdanauAttention(nn.Module):
6 def __init__(self, hidden_dim):
7 super().__init__()
8 self.W_dec = nn.Linear(hidden_dim, hidden_dim)
9 self.W_enc = nn.Linear(hidden_dim, hidden_dim)
10 self.v = nn.Linear(hidden_dim, 1)
11
12 def forward(self, decoder_hidden, encoder_outputs):
13 # Compute scores: how relevant is each encoder state?
14 dec = self.W_dec(decoder_hidden).unsqueeze(1) # [batch, 1, hidden]
15 enc = self.W_enc(encoder_outputs) # [batch, seq_len, hidd
16 scores = self.v(torch.tanh(dec + enc)) # [batch, seq len, 1]

PSYC 51.07: Models of Language and Communication

Winter 2026 14

Implementing Attention in PyTorch

21 # Weighted sum of encoder outputs
22 context = torch.sum(attn_weights * encoder_outputs, dim=1)
23
24 return context, attn_weights.squeeze(-1)

...continued

PSYC 51.07: Models of Language and Communication

Winter 2026 15

Using the Attention Module

Complete example with sample data

1# Initialize attention module
2attn = BahdanauAttention(hidden_dim=64)
3
4# Sample encoder outputs (3 words, 64-dim hidden state)
5encoder_outputs = torch.randn(1, 3, 64) # [batch=1, seq_len=3, hidden=64]
6
7# Current decoder hidden state
8decoder_hidden = torch.randn(1, 64) # [batch=1, hidden=64]
9
10# Compute attention
11context, weights = attn(decoder_hidden, encoder_outputs)
12
13print(f"Context shape: {context.shape}") # [1, 64]
14print(f"Attention weights: {weights}") # [1, 3] - sums to 1.0!
15
16# Example output:

PSYC 51.07: Models of Language and Communication

Winter 2026 16

Discussion Questions

1. Why is attention called "soft alignment"?

How is it different from hard alignment?

What are the advantages of soft vs. hard?

2. Computational Cost:
What is the time complexity of attention?

How does it scale with sequence length?

When might this be a problem?

3. Interpretability:

Can we always trust attention weights as explanations?

What about when attention is uniform across all inputs?

4 B d S 2S

PSYC 51.07: Models of Language and Communication

Winter 2026 17

Looking Ahead

What's Next?

Today we learned:

The context problem in NLP

Sequence-to-sequence architecture

The bottleneck problem

How attention mechanisms work

Attention as alignment and interpretation

Next lecture (Lecture 13):

: Attention within a sequence

: "Attention is All You Need"

PSYC 51.07: Models of Language and Communication

Winter 2026 18

Summary

Key Takeaways:

1. Context Matters
Static embeddings can't capture context-dependent meanings

Need dynamic representations based on context

2. Seq2Seq Bottleneck

Fixed-size context vector limits performance

Information loss for long sequences

3. Attention is the Solution
Dynamic access to all encoder states

Weighted combination based on relevance

Att ti i ht t 1 0 (b bilit di t ib ti)

PSYC 51.07: Models of Language and Communication

Winter 2026 19

References

Key Papers:

Sutskever et al. (2014) - "Sequence to Sequence Learning with Neural Networks"

Introduced encoder-decoder architecture

Foundation for seq2seq models

\item Bahdanau et al. (2015) - "Neural Machine Translation by Jointly Learning to

Align and Translate"

Introduced additive attention mechanism

Solved the bottleneck problem

\item Luong et al. (2015) - "Effective Approaches to Attention-based Neural Machine

Translation"

PSYC 51.07: Models of Language and Communication

Winter 2026 20

Questions?

Discussion Time

Office Hours Topics:

Implementing attention from scratch

Different attention mechanisms

Debugging attention-based models

Assignment 4 preparation

Thank you!

See you next lecture for Transformers!

PSYC 51.07: Models of Language and Communication

Winter 2026 21

