

Cognitive Models of Semantic Representation

Lecture 14: How Humans Represent Meaning

PSYC 51.07: Models of Language and Communication - Week 4

Winter 2026

Today's Lecture

1. Human vs. Computational Semantics
2. Cognitive Theories of Meaning
3. Embodied & Grounded Cognition
4. Semantic Similarity: What Does It Mean?
5. Empirical Evidence from Cognitive Science
6. Bridging the Gap: Models Meet Minds

Goal: Understand what computational models are really learning

The Fundamental Question

What does "meaning" actually mean?

Computational View:

- Vectors in high-dimensional space
- Learned from text co-occurrence
- Distributional patterns
- Statistical relationships
- "You shall know a word by the company it keeps"

Human View:

- Sensory experiences

How Do Humans Represent Meaning?

Example: The word "coffee"

What comes to YOUR mind?

- **Visual:** brown liquid, mug, steam, beans
- **Olfactory:** aroma, roasted smell
- **Gustatory:** bitter taste, smooth texture
- **Tactile:** hot, warm cup, liquid
- **Auditory:** brewing sounds, pouring
- **Motor:** lifting cup, drinking motion
- **Contextual:** morning routine, work, café
- **Emotional:** comfort, alertness, pleasure
- **Social:** conversations, meetings

The Symbol Grounding Problem

Harnad (1990): Can symbols have intrinsic meaning?

The Chinese Room (Searle, 1980):

```
1Input:  
2      ↓  
3[Rule Book: If see  
4          output      ]  
5      ↓  
6Output:  
7  
8Correct response! But no  
9understanding of Chinese.
```

Analogy to LLMs:

Embodied Cognition Theory

Meaning arises from bodily experience and sensorimotor interaction

Key Principles:

- 1. Embodiment:** Cognition shaped by body
- 2. Situatedness:** Meaning context-dependent
- 3. Enactivism:** Knowing through doing
- 4. Grounding:** Concepts tied to perception/action

Neuroscience Evidence:

- 1Reading "kick the ball":
- 2→ Motor cortex activates
- 3→ Leg area specifically!

The Distributional Hypothesis Revisited

"You shall know a word by the company it keeps"

--- J.R. Firth (1957)

Strong version: Word meaning IS distributional patterns

Weak version: Distributional patterns REFLECT meaning

Supports:

- Works remarkably well in practice
- Captures semantic similarity
- Enables analogical reasoning
- Scales to huge vocabularies

What Does "Semantic Similarity" Really Mean?

Different types of similarity:

Taxonomic (IS-A):

1 dog ↔ cat: Both are animals
2 Similarity: HIGH

Thematic (GOES-WITH):

1 dog ↔ leash: Co-occur in events
2 Relatedness: HIGH
3 Similarity: LOW!

Test Yourself:

Winter 2026

Semantic Projection: Recovering Human Knowledge

Grand et al. (2022): Can we extract human-like features from embeddings?

The Experiment:

1. Collect human ratings on perceptual features
 - Is it edible?
 - Is it heavy?
 - Is it alive?
 - Can you hold it?
2. Train linear projections from word embeddings
3. Test if embeddings predict human ratings

Multimodal Models: Bridging the Gap

Combining language with perception

Vision-Language Models:

- CLIP (OpenAI)
- ALIGN (Google)
- Flamingo (DeepMind)
- GPT-4V (OpenAI)

Key Idea:

- Learn joint embedding space
- Text and images map to same space

Conceptual Spaces Theory

Gärdenfors (2000): Meaning as geometry

Key Ideas:

- Concepts represented in quality dimensions
- Dimensions: color, size, temperature, etc.
- Each dimension has a metric
- Concepts are regions in space
- Similarity = geometric proximity

Example: Colors

- Hue, saturation, brightness

Lexical Semantic Theories

How do linguists think about word meaning?

1. Feature-Based:

- Words = bundles of features
- bachelor = [+human, +male, +adult, -married]
- Compositional
- Logical

2. Prototype Theory:

- Categories have best examples
- Robin is a prototypical bird

Empirical Evidence from Neuroscience

What does the brain tell us about semantic representation?

fMRI Studies:

- Can predict brain activity from word embeddings
- Semantic information distributed across cortex
- Different regions for different features
- Temporal lobe: objects
- Motor cortex: actions
- Visual cortex: visual features

Findings:

The "Stochastic Parrots" Debate

Bender et al. (2021): On the Dangers of Stochastic Parrots

The Argument:

- LLMs learn form, not meaning
- "Stochastic parrots" - repeating patterns
- No understanding of world
- No communicative intent
- Risk: Mistaking fluency for understanding

Evidence:

- Fail on simple reasoning

Common Sense Reasoning

What humans know but models don't

Physical Intuition Failures:

1Q: "Can you fit an elephant
2 in a refrigerator?"

3

4GPT-3: "Yes, if you open the
5 door wide enough..."

Winograd Schema (reasoning):

1"The trophy doesn't fit in the
2 brown suitcase because it is
3too [small/large]."

Compositionality: Phrases and Sentences

How do we combine word meanings?

The Problem:

```
1# Vector math doesn't work!
2vec("hot") + vec("dog") ≠ vec("hot dog")
3
4# "hot dog" = food item
5# "hot" + "dog" = warm canine
6
7# Same issue:
8vec("red") + vec("herring") ≠ vec("red herring")
9# red herring = distraction, not a fish!
```

Non-compositional Phrases:

Grand Discussion

Do large language models "understand" language?

Arguments FOR:

- Solve complex tasks
- Generalize to new domains
- Show emergent capabilities
- Capture linguistic structure
- Pragmatic criterion: if it works...
- Maybe understanding = prediction
- Human understanding also imperfect

"The question is not whether machines think, but whether they behave intelligently" -
Winter 2026 *Turing*

Summary

What we learned today:

- 1. Symbol Grounding:** Computational models lack perceptual grounding
- 2. Embodied Cognition:** Human meaning tied to bodily experience
- 3. Distributional Semantics:** Powerful but incomplete theory
- 4. Semantic Similarity:** Multiple types, models capture some
- 5. Empirical Evidence:** Models align with neural patterns but miss multimodality
- 6. Common Sense:** Models struggle with physical and social reasoning
- 7. Compositionality:** Non-literal language remains challenging

The gap between computation and cognition remains, but we're making progress!

Key References

Foundational Papers:

- Searle, J. (1980). "Minds, Brains, and Programs"
- Harnad, S. (1990). "The Symbol Grounding Problem"
- Barsalou, L. (2008). "Grounded Cognition"
- Gärdenfors, P. (2000). "Conceptual Spaces: The Geometry of Thought"

Distributional Semantics:

- Firth, J.R. (1957). "A Synopsis of Linguistic Theory"
- Boleda, G. (2020). "Distributional Semantics and Linguistic Theory"
- Hill et al. (2015). "SimLex-999"

Questions?

Next Week:

Advanced Topics in Language Models

Scaling, emergent abilities, and the future of NLP