
Word Embeddings: Word2Vec, GloVe, FastText

Lecture 11: The Neural Revolution in NLP

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 1

Today's Lecture

1. The 2013 Revolution: Word2Vec

2. Word2Vec Architectures: CBOW & Skip-gram

3. GloVe: Global Vectors

4. FastText: Subword Information

5. Comparison & Evaluation

6. Applications & Best Practices

Goal: Understand how neural methods learn dense word representations

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 2

From Count-Based to Prediction-Based

Count-Based (LSA, LDA):

Build co-occurrence matrix

Apply matrix factorization

Global statistics

Linear relationships

Interpretable factors

Advantages:

Fast training

Leverages global statistics

Mathematically grounded

i i

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 3

Word2Vec: The Revolution

2013: Everything changed

Key Innovation:

Shallow neural network

Predict context from word (CBOW)

Predict word from context (Skip-gram)

Dense, low-dimensional vectors

Captures semantic relationships

Fast training with negative sampling

Impact:

Sparked deep learning in NLP

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 4

Word2Vec: Core Intuition

Words that appear in similar contexts should have similar representations

Example Context Window
"The quick brown [TARGET] jumped over the lazy dog"

Context: [The, quick, brown, jumped, over, the, lazy, dog]

Target: fox

Key Idea:

Train a model to predict target from context (or vice versa)

The learned weights become our word vectors!

Similar words will have similar weight patterns

We don't actually care about the prediction task—we want the embeddings!

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 5

Context Windows: Worked Example

Sentence: "The cat sat on the mat"

Window size = 2 (2 words on each side)

1Position 0: "The" → Context: [cat, sat]
2Position 1: "cat" → Context: [The, sat, on]
3Position 2: "sat" → Context: [The, cat, on, the]
4Position 3: "on" → Context: [cat, sat, the, mat]
5Position 4: "the" → Context: [sat, on, mat]
6Position 5: "mat" → Context: [on, the]

Skip-gram training pairs (target → context):

1(The, cat), (The, sat)
2(cat, The), (cat, sat), (cat, on)
3(sat, The), (sat, cat), (sat, on), (sat, the)

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 6

CBOW: Continuous Bag of Words

Predict the center word from context words

1Context words:
2 "the" ──┐
3 "cat" ──┼──→ Average ──→ "sat"
4 "on" ──┼──→ Hidden ──→ (predict)
5 "the" ──┘

Architecture:

1. Input: One-hot vectors of context words

2. Hidden: Average of input embeddings

3. Output: Softmax over vocabulary

Training:

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 7

Skip-gram: The Inverse Approach

Predict context words from the center word

1Center word: Predict context:
2 ┌──→ "the"
3 ├──→ "cat"
4 "sat" ──→ Hidden ┼──→ "on"
5 └──→ "the"

Architecture:

1. Input: One-hot vector of center word

2. Hidden: Word embedding

3. Output: Softmax predicting each context word

Training:

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 8

Negative Sampling: The Speed Trick

Problem: Softmax over entire vocabulary is too expensive!

For 100k vocabulary: Need to compute 100k exponentials per training example!

Solution: Negative Sampling

Instead of predicting across all words, create a binary classification:

Positive sample: Actual context word (label = 1)

Negative samples: K random words (label = 0)

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 9

Negative Sampling: Concrete Example

Training pair: ("cat", "sat") - cat is center, sat is context

1# Positive sample: Does "sat" appear near "cat"? YES (label=1)
2positive_pair = ("cat", "sat", label=1)
3
4# Negative samples: Random words that DON'T appear near "cat"
5# Sample 5 random words from vocabulary
6negative_pairs = [
7 ("cat", "algorithm", label=0),
8 ("cat", "president", label=0),
9 ("cat", "quantum", label=0),
10 ("cat", "democracy", label=0),
11 ("cat", "software", label=0),
12]
13
14# Train binary classifier: Is this a real context pair?
15# Instead of 100k-way softmax → 6 binary predictions!

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 10

Word2Vec in Practice

1from gensim.models import Word2Vec
2import gensim.downloader as api
3
4# Load pre-trained model (300 dimensions, 3B words)
5model = api.load('word2vec-google-news-300')
6
7# Find similar words
8similar = model.most_similar('computer', topn=5)
9print(similar)
10# Output: [('computers', 0.72), ('laptop', 0.69), ('PC', 0.68), ...]
11
12# Word analogies: king - man + woman = ?
13result = model.most_similar(
14 positive=['king', 'woman'],
15 negative=['man'],
16 topn=1
17)
18print(result)

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 11

Word2Vec in Practice

21# Train your own model
22sentences = [
23 ['the', 'cat', 'sat', 'on', 'the', 'mat'],
24 ['the', 'dog', 'ran', 'in', 'the', 'park'],
25 # ... more sentences
26]
27
28custom_model = Word2Vec(
29 sentences,
30 vector_size=100, # embedding dimension
31 window=5, # context window
32 min_count=1, # ignore rare words
33 sg=1, # 1=skip-gram, 0=CBOW
34 negative=5, # negative sampling
35 workers=4 # parallel threads
36)

continued

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 12

GloVe: Global Vectors for Word Representation

Combining the best of count-based and prediction-based methods

Motivation:

Word2Vec uses local context windows

LSA uses global co-occurrence statistics

Can we get the best of both?

Key Insight:

Ratios of co-occurrence probabilities encode meaning better than raw probabilities!

Co-occurrence Example:

Probe word P(word|ice) P(word|steam) Ratio

solid high low >> 1

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 13

GloVe: The Ratio Intuition

Why ratios matter more than raw probabilities:

1Given words: "ice" and "steam"
2Probe with: "solid", "gas", "water"
3
4P(solid | ice) = 0.00019 P(solid | steam) = 0.000022
5P(gas | ice) = 0.000066 P(gas | steam) = 0.00078
6
7Ratio: P(solid|ice) / P(solid|steam) = 8.9 → "solid" relates to ice
8Ratio: P(gas|ice) / P(gas|steam) = 0.085 → "gas" relates to steam
9Ratio: P(water|ice) / P(water|steam) = 1.36 → "water" is neutral

The insight: These ratios distinguish relevant context words from irrelevant ones!

GloVe learns vectors where:

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 14

GloVe: The Objective Function

Goal: Learn vectors that capture co-occurrence statistics

Objective Function:

where:

 = number of times word appears in context of word

 = word vector for word

 = separate context vector for word

 = bias terms

 = weighting function

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 15

GloVe vs. Word2Vec

Word2Vec (Skip-gram):

Local context windows

Online training

Predicts context from word

Stochastic updates

Negative sampling trick

Each occurrence matters

Advantages:

Works well on small corpora

Can train incrementally

Captures local patterns

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 16

GloVe in Practice

1import gensim.downloader as api
2import numpy as np
3
4# Load pre-trained GloVe embeddings
5# Options: glove-wiki-gigaword-50, -100, -200, -300
6# Or: glove-twitter-25, -50, -100, -200
7glove = api.load("glove-wiki-gigaword-100")
8
9# Use just like Word2Vec
10similar = glove.most_similar('computer', topn=5)
11print(similar)
12
13# Analogies
14result = glove.most_similar(
15 positive=['france', 'berlin'],
16 negative=['paris'],
17 topn=1
18)

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 17

GloVe in Practice

21# Vector arithmetic
22king = glove['king']
23man = glove['man']
24woman = glove['woman']
25result_vec = king - man + woman
26
27# Find closest word
28closest = glove.similar_by_vector(result_vec, topn=1)
29print(closest) # Should be close to 'queen'
30
31# Compute similarity
32similarity = glove.similarity('cat', 'dog')
33print(f"Similarity: {similarity:.3f}")

...continued

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 18

FastText: Enriching with Subword Information

The Problem with Word2Vec and GloVe:

Out-of-Vocabulary (OOV) Problem
Word2Vec/GloVe: One vector per word

New word?

Misspelling?

Rare morphological form?

Example:

Have: "running", "runner"

Need: "runnable"

But these words share morphology! ("run" + suffix)

FastText Solution: Represent words as

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 19

FastText: Character N-grams

Key Idea: Break words into character n-grams

Example: "where" (with n=3)
Character trigrams: <wh, whe, her, ere, re>

Plus: <where> (the whole word)

Word vector:

Advantages:

Handles OOV words!

Captures morphology

Better for rare words

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 20

FastText: Morphology in Action

How FastText handles related words:

1# Word: "unhappiness" broken into character 3-grams:
2# <un, unh, nha, hap, app, ppi, pin, ine, nes, ess, ss>
3
4# Shares n-grams with:
5# "unhappy" → <un, unh, nha, hap, app, ppy
6# "happiness" → hap, app, ppi, pin, ine, nes, ess, ss>
7# "happy" → hap, app, ppy
8
9# Therefore: vec("unhappiness") is close to:
10# - vec("unhappy") (prefix overlap)
11# - vec("happiness") (suffix overlap)
12# - vec("sadness") (similar suffix pattern)

This is why FastText excels at morphologically rich languages!

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 21

FastText in Practice

1from gensim.models import FastText
2import gensim.downloader as api
3
4# Load pre-trained FastText model
5# Available in 157 languages!
6fasttext_model = api.load('fasttext-wiki-news-subwords-300')
7
8# Works for known words
9vec_cat = fasttext_model['cat']
10
11# Also works for unknown words! (OOV)
12vec_unknownword = fasttext_model['unknownword'] # Still get a vector!
13
14# Even works for misspellings (somewhat)
15vec_misspelling = fasttext_model['computr'] # Close to "computer"
16
17# Train your own FastText model
18sentences = [['the', 'cat', 'sat'], ['the', 'dog', 'ran']]

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 22

FastText in Practice

21 sentences,
22 vector_size=100,
23 window=5,
24 min_count=1,
25 min_n=3, # minimum n-gram length
26 max_n=6, # maximum n-gram length
27 word_ngrams=1 # use word + ngrams
28)
29
30# Check similar words
31similar = ft_model.wv.most_similar('cat', topn=5)
32
33# Morphological awareness
34# 'running', 'runner', 'runnable' will be close

...continued

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 23

Embedding Methods Comparison

LDA 2003 Probabilistic ✗ Slow Topic modeling

Word2Vec 2013 Neural (local) ✗ Fast General NLP

GloVe 2014 Hybrid (global) ✗ Fast Large corpora

FastText 2017 Neural + ngrams ✓ Fast Morphology-rich

When to Use What?

Word2Vec (Skip-gram): General purpose, good semantic quality, most popular

GloVe: Large corpus, want deterministic training, good interpretability

FastText: Morphologically rich languages, need OOV handling, many rare words

LSA/LDA: Topic modeling, document similarity, interpretable dimensions

Typical dimensions: 50-300 (100-300 most common)

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 24

Evaluating Word Embeddings

Intrinsic Evaluation:

1. Word Similarity

WordSim-353 dataset

SimLex-999 dataset

Spearman correlation with human judgments

2. Word Analogies

Google Analogy Dataset (19k questions)

Semantic: Athens:Greece::Baghdad:Iraq

Syntactic: good:better::bad:worse

Accuracy: % correct

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 25

Limitations of Static Embeddings

The fundamental problem: One vector per word type

Example: Polysemy
1. "I deposited money at the bank" (financial institution)

2. "We sat by the river bank" (riverside)

3. "The plane will bank left" (tilt)

All get the ! This conflates different meanings.

Other Limitations:

No compositional semantics

"hot dog" "hot" + "dog"

Bias in embeddings

Limited to training corpus

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 26

Bias in Word Embeddings

Embeddings learn the biases in their training data

Gender Bias Examples

"man" more associated with "career", "woman" with "family"

Other Biases:

Racial/ethnic stereotypes

Age bias

Religious bias

Socioeconomic bias

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 27

Bias Detection: Code Example

1import gensim.downloader as api
2model = api.load('word2vec-google-news-300')
3
4# Measure gender bias: which words are closer to "man" vs "woman"?
5def gender_bias_score(word):
6 """Positive = closer to man, Negative = closer to woman"""
7 return model.similarity(word, 'man') - model.similarity(word, 'woman')
8
9occupations = ['doctor', 'nurse', 'engineer', 'teacher',
10 'programmer', 'secretary', 'scientist', 'receptionist']
11
12for job in occupations:
13 score = gender_bias_score(job)
14 direction = "→ man" if score > 0 else "→ woman"
15 print(f"{job:12}: {score:+.3f} {direction}")
16
17# Output:
18# doctor : +0.089 → man

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 28

Bias Detection: Code Example

21# teacher : -0.046 → woman
22# programmer : +0.091 → man
23# secretary : -0.107 → woman

...continued

These biases reflect stereotypes in the training data (news articles)!

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 29

Debiasing Approaches

How can we reduce bias in embeddings?

1. Post-processing:

Identify bias subspace

Neutralize: Remove bias from neutral words

Equalize: Ensure equal distances

2. Training-time:

Counterfactual data augmentation

Adversarial debiasing

Constrained optimization

3. Data curation:

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 30

Practical Tips for Using Embeddings

1. Start with pre-trained models

Word2Vec: Google News (300d, 3B words)

GloVe: Common Crawl (300d, 840B tokens)

FastText: Available in 157 languages

2. Fine-tune if you have domain data

Medical: PubMed, clinical notes

Legal: case law, contracts

Social media: tweets, posts

Can significantly improve performance

3. Choose dimensions wisely
More dims = more expressiveness, more data needed

50 100d small datasets fast comp tation

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 31

Loading Pre-trained Embeddings: Quick Reference

1import gensim.downloader as api
2
3# Word2Vec (Google News, 3B words, 300d)
4w2v = api.load('word2vec-google-news-300')
5
6# GloVe options
7glove_50d = api.load('glove-wiki-gigaword-50') # Small, fast
8glove_100d = api.load('glove-wiki-gigaword-100') # Balanced
9glove_300d = api.load('glove-wiki-gigaword-300') # Best quality
10glove_twitter = api.load('glove-twitter-100') # Social media
11
12# FastText (handles OOV!)
13fasttext = api.load('fasttext-wiki-news-subwords-300')
14
15# Basic usage (same for all)
16similar = model.most_similar('computer', topn=5)
17vector = model['cat']
18similarity = model.similarity('dog', 'cat')

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 32

Real-World Applications

Search & Information Retrieval:

Semantic search

Query expansion

Document ranking

Question answering

Text Classification:

Sentiment analysis

Spam detection

Topic classification

Intent detection

i

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 33

Discussion Question

Why do word analogies work so well?

The famous example:

Think about:

What does vector subtraction represent linguistically?

Why does this capture semantic relationships?

What are the limitations of this approach?

Does this mean embeddings "understand" gender?

Deeper Question

Are these embeddings truly capturing meaning, or just statistical patterns?

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 34

Summary

What we learned today:

1. Word2Vec (2013): Neural revolution in embeddings
CBOW: Predict center from context

Skip-gram: Predict context from center

Negative sampling for efficiency

2. GloVe (2014): Combining count + prediction

Global co-occurrence statistics

Factorization objective

Ratio of probabilities

3. FastText (2017): Subword information

Character n-grams

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 35

Key References

Foundational Papers:

Mikolov et al. (2013a). "Efficient Estimation of Word Representations in Vector Space"

Mikolov et al. (2013b). "Distributed Representations of Words and Phrases and their
Compositionality"

Pennington et al. (2014). "GloVe: Global Vectors for Word Representation"

Bojanowski et al. (2017). "Enriching Word Vectors with Subword Information"

Bias & Ethics:

Bolukbasi et al. (2016). "Man is to Computer Programmer as Woman is to
Homemaker?"

Caliskan et al. (2017). "Semantics derived automatically from language corpora
contain human-like biases"

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 36

Questions?

Next Lecture:

Contextual Embeddings: ELMo, Universal Sentence Encoder, BERT

One word, multiple meanings!

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026 37

