

Word Embeddings: Word2Vec, GloVe, FastText

Lecture 11: The Neural Revolution in NLP

PSYC 51.07: Models of Language and Communication - Week 3

Winter 2026

Today's Lecture

1. The 2013 Revolution: Word2Vec
2. Word2Vec Architectures: CBOW & Skip-gram
3. GloVe: Global Vectors
4. FastText: Subword Information
5. Comparison & Evaluation
6. Applications & Best Practices

Goal: Understand how neural methods learn dense word representations

From Count-Based to Prediction-Based

Count-Based (LSA, LDA):

- Build co-occurrence matrix
- Apply matrix factorization
- Global statistics
- Linear relationships
- Interpretable factors

Advantages:

- Fast training
- Leverages global statistics
- Mathematically grounded

Word2Vec: The Revolution

2013: Everything changed

Key Innovation:

- Shallow neural network
- Predict context from word (CBOW)
- Predict word from context (Skip-gram)
- Dense, low-dimensional vectors
- Captures semantic relationships
- Fast training with negative sampling

Impact:

Word2Vec: Core Intuition

Words that appear in similar contexts should have similar representations

Example Context Window

"The quick brown [TARGET] jumped over the lazy dog"

Context: [The, quick, brown, jumped, over, the, lazy, dog]

Target: fox

Key Idea:

- Train a model to predict target from context (or vice versa)
- The learned **weights** become our word vectors!
- Similar words will have similar weight patterns

Context Windows: Worked Example

Sentence: "The cat sat on the mat"

Window size = 2 (2 words on each side)

```
1Position 0: "The"    → Context: [cat, sat]
2Position 1: "cat"    → Context: [The, sat, on]
3Position 2: "sat"    → Context: [The, cat, on, the]
4Position 3: "on"     → Context: [cat, sat, the, mat]
5Position 4: "the"    → Context: [sat, on, mat]
6Position 5: "mat"    → Context: [on, the]
```

Skip-gram training pairs (target → context):

```
1(The, cat), (The, sat)
2(cat, The), (cat, sat), (cat, on)
3(sat, The), (sat, cat), (sat, on), (sat, the)
```

CBOW: Continuous Bag of Words

Predict the center word from context words

1 Context words:

2 "the"
3 "cat" Average → "sat"
4 "on" Hidden → (predict)
5 "the"

Architecture:

1. Input: One-hot vectors of context words
2. Hidden: Average of input embeddings
3. Output: Softmax over vocabulary

Skip-gram: The Inverse Approach

Predict context words from the center word

1 Center word:

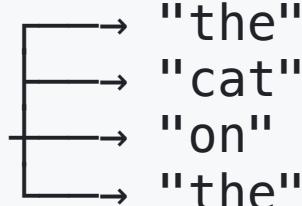
2

3

4 "sat" —> Hidden

5

Predict context:



Architecture:

1. Input: One-hot vector of center word
2. Hidden: Word embedding
3. Output: Softmax predicting each context word

Training:

Negative Sampling: The Speed Trick

Problem: Softmax over entire vocabulary is too expensive!

$$P(w_O|w_I) = \frac{\exp(v_{w_O}^T v_{w_I})}{\sum_{w=1}^V \exp(v_w^T v_{w_I})}$$

For 100k vocabulary: Need to compute 100k exponentials per training example!

Solution: Negative Sampling

Instead of predicting across all words, create a binary classification:

- **Positive sample:** Actual context word (label = 1)
- **Negative samples:** K random words (label = 0)

$$\log \sigma(v_{w_O}^T v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} [\log \sigma(-v_{w_i}^T v_{w_I})]$$

Negative Sampling: Concrete Example

Training pair: ("cat", "sat") - cat is center, sat is context

```
1# Positive sample: Does "sat" appear near "cat"? YES (label=1)
2positive_pair = ("cat", "sat", label=1)
3
4# Negative samples: Random words that DON'T appear near "cat"
5# Sample 5 random words from vocabulary
6negative_pairs = [
7    ("cat", "algorithm", label=0),
8    ("cat", "president", label=0),
9    ("cat", "quantum", label=0),
10   ("cat", "democracy", label=0),
11   ("cat", "software", label=0),
12]
13
14# Train binary classifier: Is this a real context pair?
15# Instead of 100k-way softmax → 6 binary predictions!
```

Word2Vec in Practice


```
1from gensim.models import Word2Vec
2import gensim.downloader as api
3
4# Load pre-trained model (300 dimensions, 3B words)
5model = api.load('word2vec-google-news-300')
6
7# Find similar words
8similar = model.most_similar('computer', topn=5)
9print(similar)
10# Output: [('computers', 0.72), ('laptop', 0.69), ('PC', 0.68), ...]
11
12# Word analogies: king - man + woman = ?
13result = model.most_similar(
14    positive=['king', 'woman'],
15    negative=['man'],
16    topn=1
17)
18print(result)
```

Word2Vec in Practice


```
21# Train your own model
22sentences = [
23    ['the', 'cat', 'sat', 'on', 'the', 'mat'],
24    ['the', 'dog', 'ran', 'in', 'the', 'park'],
25    # ... more sentences
26]
27
28custom_model = Word2Vec(
29    sentences,
30    vector_size=100,      # embedding dimension
31    window=5,            # context window
32    min_count=1,         # ignore rare words
33    sg=1,                # 1=skip-gram, 0=CBOW
34    negative=5,          # negative sampling
35    workers=4            # parallel threads
36)
```

GloVe: Global Vectors for Word Representation

Combining the best of count-based and prediction-based methods

Motivation:

- Word2Vec uses **local** context windows
- LSA uses **global** co-occurrence statistics
- Can we get the best of both?

Key Insight:

Ratios of co-occurrence probabilities encode meaning better than raw probabilities!

Co-occurrence Example:

Probe word	$P(\text{word} \text{ice})$	$P(\text{word} \text{steam})$	Ratio
solid	high	low	$\gg 1$

GloVe: The Ratio Intuition

1 2
3 4

Why ratios matter more than raw probabilities:

1 Given words: "ice" and "steam"

2 Probe with: "solid", "gas", "water"

3

4 $P(\text{solid} \mid \text{ice}) = 0.00019$ $P(\text{solid} \mid \text{steam}) = 0.000022$

5 $P(\text{gas} \mid \text{ice}) = 0.000066$ $P(\text{gas} \mid \text{steam}) = 0.00078$

6

7 Ratio: $P(\text{solid} \mid \text{ice}) / P(\text{solid} \mid \text{steam}) = 8.9 \rightarrow \text{"solid" relates to ice}$

8 Ratio: $P(\text{gas} \mid \text{ice}) / P(\text{gas} \mid \text{steam}) = 0.085 \rightarrow \text{"gas" relates to steam}$

9 Ratio: $P(\text{water} \mid \text{ice}) / P(\text{water} \mid \text{steam}) = 1.36 \rightarrow \text{"water" is neutral}$

The insight: These ratios distinguish relevant context words from irrelevant ones!

GloVe learns vectors where: $\frac{\vec{w}_{\text{ice}}^T \vec{w}_{\text{solid}}}{\vec{w}_{\text{steam}}^T \vec{w}_{\text{solid}}} \approx 8.9$

GloVe: The Objective Function

Goal: Learn vectors that capture co-occurrence statistics

Objective Function:

$$J = \sum_{i,j=1}^V f(X_{ij}) \left(\vec{w}_i^T \tilde{\vec{w}}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

where:

- X_{ij} = number of times word j appears in context of word i
- \vec{w}_i = word vector for word i
- $\tilde{\vec{w}}_j$ = separate context vector for word j
- b_i, \tilde{b}_j = bias terms
- $f(X_{ij})$ = weighting function

GloVe vs. Word2Vec

Word2Vec (Skip-gram):

- Local context windows
- Online training
- Predicts context from word
- Stochastic updates
- Negative sampling trick
- Each occurrence matters

Advantages:

- Works well on small corpora
- Can train incrementally
- Captures local patterns

GloVe in Practice


```
1import gensim.downloader as api
2import numpy as np
3
4# Load pre-trained GloVe embeddings
5# Options: glove-wiki-gigaword-50, -100, -200, -300
6# Or: glove-twitter-25, -50, -100, -200
7glove = api.load("glove-wiki-gigaword-100")
8
9# Use just like Word2Vec
10similar = glove.most_similar('computer', topn=5)
11print(similar)
12
13# Analogies
14result = glove.most_similar(
15    positive=['france', 'berlin'],
16    negative=['paris'],
17    topn=1
18)
```

GloVe in Practice


```
21# Vector arithmetic
22king = glove['king']
23man = glove['man']
24woman = glove['woman']
25result_vec = king - man + woman
26
27# Find closest word
28closest = glove.similar_by_vector(result_vec, topn=1)
29print(closest) # Should be close to 'queen'
30
31# Compute similarity
32similarity = glove.similarity('cat', 'dog')
33print(f"Similarity: {similarity:.3f}")
```

...continued

FastText: Enriching with Subword Information

The Problem with Word2Vec and GloVe:

Out-of-Vocabulary (OOV) Problem

- Word2Vec/GloVe: One vector per word
- New word?
- Misspelling?
- Rare morphological form?

Example:

- Have: "running", "runner"
- Need: "Runnable" →
- But these words share morphology! ("run" + suffix)

FastText: Character N-grams

Key Idea: Break words into character n-grams

Example: "where" (with n=3)

Character trigrams: <wh, whe, her, ere, re>

Plus: <where> (the whole word)

Word vector:

$$\vec{w}_{\text{where}} = \frac{1}{6} (\vec{z}_{\text{<wh}} + \vec{z}_{\text{whe}} + \vec{z}_{\text{her}} + \vec{z}_{\text{ere}} + \vec{z}_{\text{re>}} + \vec{z}_{\text{<where>}})$$

Advantages:

- Handles OOV words!
- Captures morphology
- Better for rare words

FastText: Morphology in Action

How FastText handles related words:

```
1# Word: "unhappiness" broken into character 3-grams:  
2# <un, unh, nha, hap, app, ppi, pin, ine, nes, ess, ss>  
3  
4# Shares n-grams with:  
5# "unhappy" → <un, unh, nha, hap, app, ppy  
6# "happiness" → hap, app, ppi, pin, ine, nes, ess, ss>  
7# "happy" → hap, app, ppy  
8  
9# Therefore: vec("unhappiness") is close to:  
10#   - vec("unhappy")      (prefix overlap)  
11#   - vec("happiness")    (suffix overlap)  
12#   - vec("sadness")      (similar suffix pattern)
```

This is why FastText excels at morphologically rich languages!

FastText in Practice


```
1from gensim.models import FastText
2import gensim.downloader as api
3
4# Load pre-trained FastText model
5# Available in 157 languages!
6fasttext_model = api.load('fasttext-wiki-news-subwords-300')
7
8# Works for known words
9vec_cat = fasttext_model['cat']
10
11# Also works for unknown words! (OOV)
12vec_unknownword = fasttext_model['unknownword'] # Still get a vector!
13
14# Even works for misspellings (somewhat)
15vec_misspelling = fasttext_model['computr'] # Close to "computer"
16
17# Train your own FastText model
18sentences = [['the', 'cat', 'sat'], ['the', 'dog', 'ran']]
```

FastText in Practice


```
21    sentences,  
22    vector_size=100,  
23    window=5,  
24    min_count=1,  
25    min_n=3,      # minimum n-gram length  
26    max_n=6,      # maximum n-gram length  
27    word_ngrams=1 # use word + ngrams  
28)  
29  
30# Check similar words  
31similar = ft_model.wv.most_similar('cat', topn=5)  
32  
33# Morphological awareness  
34# 'running', 'runner', 'runnable' will be close
```

...continued

Winter 2026

Embedding Methods Comparison

LDA	2003	Probabilistic	✗	Slow	Topic modeling
Word2Vec	2013	Neural (local)	✗	Fast	General NLP
GloVe	2014	Hybrid (global)	✗	Fast	Large corpora
FastText	2017	Neural + ngrams	✓	Fast	Morphology-rich

When to Use What?

- **Word2Vec (Skip-gram):** General purpose, good semantic quality, most popular
- **GloVe:** Large corpus, want deterministic training, good interpretability
- **FastText:** Morphologically rich languages, need OOV handling, many rare words
- **LSA/LDA:** Topic modeling, document similarity, interpretable dimensions

Evaluating Word Embeddings

Intrinsic Evaluation:

1. Word Similarity

- WordSim-353 dataset
- SimLex-999 dataset
- Spearman correlation with human judgments

2. Word Analogies

- Google Analogy Dataset (19k questions)
- Semantic: *Athens:Greece::Baghdad:Iraq*
- Syntactic: *good:better::bad:worse*

Limitations of Static Embeddings !

The fundamental problem: One vector per word type

Example: Polysemy

1. "I deposited money at the **bank**" (financial institution)
2. "We sat by the river **bank**" (riverside)
3. "The plane will **bank** left" (tilt)

All get the ! This conflates different meanings.

Other Limitations:

- No compositional semantics
- "hot dog" \neq "hot" + "dog"
- Bias in embeddings

Bias in Word Embeddings

Embeddings learn the biases in their training data

Gender Bias Examples

- $\vec{\text{man}} : \text{computer} \xrightarrow{\quad} \text{programmer} :: \vec{\text{woman}} : \text{homemaker}$
- $\vec{\text{man}} : \text{doctor} :: \vec{\text{woman}} : \text{nurse}$
- "man" more associated with "career", "woman" with "family"

Other Biases:

- Racial/ethnic stereotypes
- Age bias
- Religious bias
- Socioeconomic bias

Bias Detection: Code Example

```
1import gensim.downloader as api
2model = api.load('word2vec-google-news-300')
3
4# Measure gender bias: which words are closer to "man" vs "woman"?
5def gender_bias_score(word):
6    """Positive = closer to man, Negative = closer to woman"""
7    return model.similarity(word, 'man') - model.similarity(word, 'woman')
8
9occupations = ['doctor', 'nurse', 'engineer', 'teacher',
10                 'programmer', 'secretary', 'scientist', 'receptionist']
11
12for job in occupations:
13    score = gender_bias_score(job)
14    direction = "-> man" if score > 0 else "-> woman"
15    print(f"{job:12}: {score:+.3f} {direction}")
16
17# Output:
18# doctor      : +0.089 → man
```

Bias Detection: Code Example

```
21# teacher      : -0.046 → woman
22# programmer   : +0.091 → man
23# secretary    : -0.107 → woman
```


...continued

These biases reflect stereotypes in the training data (news articles)!

Debiasing Approaches

How can we reduce bias in embeddings?

1. Post-processing:

- Identify bias subspace
- Neutralize: Remove bias from neutral words
- Equalize: Ensure equal distances

2. Training-time:

- Counterfactual data augmentation
- Adversarial debiasing
- Constrained optimization

Practical Tips for Using Embeddings

1. Start with pre-trained models

- Word2Vec: Google News (300d, 3B words)
- GloVe: Common Crawl (300d, 840B tokens)
- FastText: Available in 157 languages

2. Fine-tune if you have domain data

- Medical: PubMed, clinical notes
- Legal: case law, contracts
- Social media: tweets, posts
- Can significantly improve performance

3. Choose dimensions wisely

- More dims = more expressiveness, more data needed

Loading Pre-trained Embeddings: Quick Reference


```
1import gensim.downloader as api
2
3# Word2Vec (Google News, 3B words, 300d)
4w2v = api.load('word2vec-google-news-300')
5
6# GloVe options
7glove_50d = api.load('glove-wiki-gigaword-50')          # Small, fast
8glove_100d = api.load('glove-wiki-gigaword-100')        # Balanced
9glove_300d = api.load('glove-wiki-gigaword-300')        # Best quality
10glove_twitter = api.load('glove-twitter-100')           # Social media
11
12# FastText (handles OOV!)
13fasttext = api.load('fasttext-wiki-news-subwords-300')
14
15# Basic usage (same for all)
16similar = model.most_similar('computer', topn=5)
17vector = model['cat']
18similarity = model.similarity('dog', 'cat')
```

Real-World Applications

Search & Information Retrieval:

- Semantic search
- Query expansion
- Document ranking
- Question answering

Text Classification:

- Sentiment analysis
- Spam detection
- Topic classification
- Intent detection

Discussion Question

Why do word analogies work so well?

The famous example:

$$\vec{\text{king}} - \vec{\text{m}\ddot{\text{a}}\text{n}} + \vec{\text{w}\ddot{\text{o}}\text{m}\text{a}\text{n}} \approx \vec{\text{q}\ddot{\text{u}}\text{e}\text{e}\text{n}}$$

Think about:

- What does vector subtraction represent linguistically?
- Why does this capture semantic relationships?
- What are the limitations of this approach?
- Does this mean embeddings "understand" gender?

Deeper Question

Are these embeddings truly capturing *meaning*, or just statistical patterns?

Summary

What we learned today:

1. **Word2Vec (2013):** Neural revolution in embeddings

- CBOW: Predict center from context

- Skip-gram: Predict context from center

- Negative sampling for efficiency

2. **GloVe (2014):** Combining count + prediction

- Global co-occurrence statistics

- Factorization objective

- Ratio of probabilities

3. **FastText (2017):** Subword information

- Character n-grams

Key References

Foundational Papers:

- Mikolov et al. (2013a). "Efficient Estimation of Word Representations in Vector Space"
- Mikolov et al. (2013b). "Distributed Representations of Words and Phrases and their Compositionality"
- Pennington et al. (2014). "GloVe: Global Vectors for Word Representation"
- Bojanowski et al. (2017). "Enriching Word Vectors with Subword Information"

Bias & Ethics:

- Bolukbasi et al. (2016). "Man is to Computer Programmer as Woman is to Homemaker?"
- Caliskan et al. (2017). "Semantics derived automatically from language corpora contain human-like biases"

Questions?

Next Lecture:

Contextual Embeddings: ELMo, Universal Sentence Encoder, BERT

One word, multiple meanings!