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Learning Objectives

By the end of this session, you will:

1. Implement classic dimensionality reduction (LSA, LDA)
2. Train and analyze Word2Vec embeddings

3. Visualize high-dimensional embeddings using UMAP
4. Compare different embedding methods on real data

5. Understand semantic relationships captured by embeddings

Workshop format: Hands-on coding with the 20 Newsgroups dataset
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Workshop Overview

Today's Agenda:

1. Part 1: Why embeddings? From sparse to dense representations
2.Part 2: LSA - Latent Semantic Analysis with SVD

3. Part 3: LDA - Latent Dirichlet Allocation for topic modeling

4. Part 4: Word2Vec - Neural word embeddings

5. Part 5: Visualizing embeddings with UMAP

6. Part 6: Comparing methods and document classification

Companion notebook: xhour_embeddings_demo. ipynb
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Part 1: Why Embeddings?

The problem with sparse representations:
Last week (BoW, TF-IDF):

e High dimensional (vocab size)
e Sparse (mostly zeros)
e No semantic similarity

e "dog" and "puppy" are orthogonal
Embeddings:
e Low dimensional (50-300 dims)

e Dense (all non-zero)

o Similar words cluster together
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Sparse vs Dense: Concrete Comparison

1# Sparse representation (one-hot / BoW)

2# Vocabulary: [cat, dog, puppy, car, truck, vehicle]
3

4cat_sparse
5dog_sparse
bpuppy_sparse
7

8# Cosine similarity: cat-dog = 0, dog-puppy = @ (orthogonal!)
9

10# Dense embedding (learned from data)

llcat_dense (0.8, -0.2, 0.5] # 3 dimensions, all non-zero
12dog_dense (0.7, -0.1, 0.6] # Similar to cat!
13puppy_dense [0.75, -0.15, 0.55] # Very similar to dog!
14car_dense [-0.3, 0.9, -0.4] # Different cluster

15

16# Cosine similarity: cat-dog = 0.98, dog—puppy = 0.99

[1, 0, 0, 0, 0, 0] # 6 dimensions, 5 zeros
[0, 1, 0, 0, 0, O]
(6, 0, 1, 0, 0, O]
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The Magic of Word Vectors

Famous example: king - man + woman = queen

Vector Arithmetic
Word embeddings capture semantic relationships as directions in space:

o Gender direction: woman - man
e Royalty direction: king - queen

e Pluralization: words - word

Key insight: Meaning encoded as geometry!
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Vector Arithmetic: Step-by-Step Example

limport numpy as np

2

3# Pretend embeddings (simplified to 3D for illustration)
4embeddings = {

5 'king': np.array([0.9, 0.8, 0.2])

6 ‘queen': np.array([0.85, 0.75, 0.7]),
7 'man’: np.array([0.7, 0.6, 0.1]),

8 'woman': np.array([0.65, 0.55, 0.6]),
9}

10

11# The analogy: king — man + woman = ?

12result = embeddings['king'] - embeddings['man'] + embeddings['woman']
13# result [0.9-0.7+0.65, 0.8-0.6+0.55, 0.2-0.1+0.6]

144 [0.85, 0.75, 0.7] <« Very close to 'queen'!

15

16# Why does this work?

17# king — man = "royalty" direction = [0.2, 0.2, 0.1]

18# woman + royalty = queen
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Part 2: Latent Semantic Analysis (LSA)

Using SVD to find latent topics:
X ~ UpZi Vi
Algorithm:
1. Build TF-IDF matrix X
2. Apply Singular Value Decomposition

3. Keep top k dimensions

4.Use U}, as word embeddings
Interpretation:

e U: word-topic associations

e X topic strengths

p——
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LSA Iin Code

1from sklearn.decomposition import TruncatedSVD

2from sklearn.feature_extraction.text import TfidfVectorizer

3

4# Build TF-IDF matrix

5tfidf = TfidfVectorizer(max_features=5000, stop_words='english')
6tfidf matrix = tfidf.fit_transform(documents)

7

8# Apply LSA

91lsa = TruncatedSVD(n_components=100, random_state=42)
10doc_embeddings = lsa.fit_transform(tfidf_matrix)
llword_embeddings = lsa.components_.T

12

13print(f"Explained variance: {lsa.explained_variance_ratio_.sum():.2%}")

Try it: Find similar words using cosine similarity!
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LSA: Finding Similar Words

1from sklearn.metrics.pairwise import cosine_similarity
2import numpy as np

3

4# Get vocabulary mapping

5vocab = tfidf.get_feature_names_out()

6word _to_idx = {word: i for i, word in enumerate(vocab)}

7/

8def find_similar_words(word, top_n=5):

9 ""UEind words with similar LSA embeddings.™""
10 if word not in word_to_idx:

11 return f"'{word}' not in vocabulary"

12

13 idx = word_to_idx[word]

14 word_vec = word_embeddings[idx].reshape(1, -1)
15

16 # Compute similarities to all words

17 sims = cosine_similarity(word_vec, word_embeddings) [0]

18
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LSA: Finding Similar Words

21 return [(vocab[i], f"{sims[i]:.3f}") for i in top_indices]
22

23print(find_similar_words (" computer"))

24# Output: [('software', 0.82), ('program', 0.79),

25%# ('system', 0.71), ('hardware', 0.68), ('disk', 0.65)]

...continued

11
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Part 3: LDA for Topic Modeling

A probabilistic approach:

Generative Story

LDA imagines documents are created by:
1. Choosing a mixture of topics
2. For each word, picking a topic

3. Sampling a word from that topic
Key difference from LSA:

e Probabilistic interpretation
e Non-negative weights

e More interpretable topics

12
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LDA Example Output

1Topic
2Topic
3Topic
4Topic
5Topic

AP WNEROS

hockey, game, team, player, season, nhl, play
space, nasa, launch, orbit, shuttle, satellite
computer, software, program, file, windows, system

: medical, doctor, patient, disease, health, treatment
: government, president, congress, law, political

Each document is a mixture of topics:
Document #42: 60% Space + 25% Computer + 15% Other

13
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LDA: Complete Working Example

1from sklearn.decomposition import LatentDirichletAllocation
2from sklearn.feature_extraction.text import CountVectorizer
3

4# 20 Newsgroups sample documents

5documents = [

6 "The hockey team scored three goals in the game",
7/ "'NASA launched a new satellite into orbit",

8 "Install the software program on your computer",
9 "The doctor prescribed medicine for the patient",
10 # ... more documents

11]

12

13# Step 1: Create bag-of—-words matrix

l4vectorizer = CountVectorizer(max_features=1000, stop_words='english')
15bow_matrix = vectorizer.fit _transform(documents)
16

17# Step 2: Fit LDA
181da = LatentDirichletAllocation(n components=5, random state=42)
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LDA: Complete Working Example

21# Step 3: Print topics

22vocab = vectorizer.get_feature_names_out()

23for topic_idx, topic in enumerate(lda.components_):
24 top_words = [vocab[i] for i in topic.argsort()

[-7:11]
25 print(f"Topic {topic_idx}: {', '.join(top_words)}")

...continued
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Part 4: Word2Vec

Learning embeddings from context:

Skip-gram:
Given target word, predict context

"The cat sat on mat"
e cat = the, sat, on

CBOW:
Given context, predict target

the, sat, on - cat

1from gensim.models import Word2Vec
2

— 1 - 'O ] I v 7 [

16
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Word2Vec: Semantic Similarity

1# Find similar words

2model.wv.most_similar('computer', topn=5)

3# [('software', 0.82), ('program', 0.79), ('system', 0.75),
4

5# Word analogies

omodel.wv.most_similar(

7 positive=['woman', 'king'],
8 negative=['man"']
9)

10# [('queen', 0.71), ...]

Hands-on Exercise
Try creating your own word analogies! What works? What fails?

]

17
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Word2Vec: Exploring Analogies

1# Analogies that typically WORK well:
2model.wv.most_similar(positive=['paris', 'germany'l, negative=['france'l])
3# -» 'berlin' (capital cities)
4
5model.wv.most_similar(positive=['walking', 'swam'], negative=['swimming'])
6# - 'walked' (verb tenses)
7
8model.wv.most_similar(positive=['bigger', 'cold'], negative=['big'])
9# - 'colder' (comparatives)
10
11# Analogies that often FAIL:
12model.wv.most_similar(positive=['doctor', 'woman'], negative=['man'])
13# - might return 'nurse' instead of 'doctor' (reflects bias!)
14
15model.wv.most_similar(positive=['sushi', 'italy'], negative=['japan'])
16# - uncertain results (cultural associations are noisy)
18
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Part 5: Visualizing with UMAP

Projecting 100D - 2D:

limport umap

2

3reducer = umap.UMAP(

4 n_neighbors=15,

5 min_dist=0.1,

6 metric="'cosine’

7)

8

9embeddings_2d = reducer.fit_transform(word_vectors)

UMAP advantages:

e Faster than t-SNE

e Preserves global structure

19
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What You Should See

When you visualize embeddings:
Sports cluster:

e hockey, baseball, player, team, game
Space cluster:

e nasa, shuttle, orbit, launch, space
Tech cluster:

e computer, software, program, windows
Medical cluster:

e doctor, patient, hospital, treatment
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20
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UMAP Visualization: Complete Code

limport umap

2import matplotlib.pyplot as plt

3

4# Get word vectors for a subset of interesting words
5words_to_plot = ['hockey', 'baseball', 'player', 'team', 'game',

6 ‘nasa’, 'shuttle', 'orbit', 'space', ‘'satellite',

7/ ‘computer', 'software', 'program', ‘'windows', 'disk’',

8 'doctor', 'patient', 'hospital', 'disease', 'treatment']
9

10word_vectors = np.array([model.wv[w] for w in words_to_plot])

11

12# Reduce to 2D with UMAP

13reducer = umap.UMAP(n_neighbors=5, min_dist=0.3, metric='cosine')
1l4embeddings_2d = reducer.fit_transform(word_vectors)

15

16# Plot

17plt.fiqure(figsize=(12, 8))

18plt.scatter(embeddings 2d[:, 01, embeddings 2d[:, 11, alpha=0.7)

21
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UMAP Visualization: Complete Code

21plt.title("Word Embeddings Visualized with UMAP")
22plt.savefig("word_clusters.png")

...continued

22



PSYC 51.07: Models of Language and Communication

Part 6: Comparing Methods

Method Speed Interpretability Quality Data Needed

LSA Fast Medium Medium Small-Medium
LDA Medium High Medium Medium
Word2Vec Medium Low High Large

Recommendations:

e Quick exploration: LSA
e |Interpretable topics: LDA

o Best semantic quality: Word2Vec

23
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Document Classification with Embeddings

Using embeddings as features:

ldef document_vector(doc, model):

2 """Average word vectors for document.'""

3 tokens = preprocess(doc)

4 vectors = [model.wv[w] for w in tokens if w in model.wv]

5 return np.mean(vectors, axis=0) if vectors else np.zeros(100)
6

7# Train classifier

8X_train = [document_vector(doc, w2v) for doc in train_docs]

9clf = LogisticRegression()

10clf.fit(X_train, y_train)

Compare to TF-IDF baseline!

24
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Classification Comparison: Full Example

1from sklearn.linear_model import LogisticRegression

2from sklearn.model_selection import cross_val_score

3

4# Method 1: TF-IDF baseline

5tfidf = TfidfVectorizer(max_features=5000)

6X_tfidf = tfidf.fit _transform(train_docs)

7clf_tfidf = LogisticRegression(max_iter=1000)

8tfidf_scores = cross_val_score(clf_tfidf, X_tfidf, y_train, cv=5)
9

10# Method 2: LSA embeddings

111sa = TruncatedSVD(n_components=100)

12X _1lsa = lsa.fit_transform(X_tfidf)

13c1f_1sa = LogisticRegression(max_iter=1000)

141sa_scores = cross_val_score(clf_lsa, X _1lsa, y_train, cv=5)

15

16# Method 3: Word2Vec embeddings

17X_w2v = np.array( [document_vector(doc, model) for doc in train_docs])
18c1f w2v = LogisticRegression(max iter=1000)

25
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Classification Comparison: Full Example

21print (f"TF-IDF:  {tfidf_scores.mean():.3f} (+/- {tfidf_scores.std():.3f})")
22print (f"LSA: {lsa_scores.mean():.3f} (+/- {lsa_scores.std():.3f})")
23print(f"Word2Vec: {w2v_scores.mean():.3f} (+/- {w2v_scores.std():.3f})")

...continued

26
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Key Takeaways

1. Embeddings capture semantic meaning - similar words have similar vectors
2. Different methods, different strengths:

o LSA: Fast, linear, interpretable
o LDA: Probabilistic, topic-focused

o Word2Vec: Neural, best for similarity
3. Visualization reveals structure - UMAP shows semantic clusters
4. Limitations:

o Static (one vector per word, no context)
o Requires substantial data

o Can encode biases

27
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Discussion Questions

1. Why does vector arithmetic work? What does "king - man + woman" really mean
geometrically?

2.Bias in embeddings: If Word2Vec learns from news articles, what biases might it
capture?

3. Window size matters: What happens with window=2 vs window=107?
4. Out-of-vocabulary problem: How do you handle words not in your vocabulary?

5. When to use what: For a sentiment analysis task, would you choose LSA, LDA, or
Word2Vec?

28



PSYC 51.07: Models of Language and Communication

Next Steps

For Assignment 2:

o Use embeddings to improve your classifier
o Compare at least 2 embedding methods

e Visualize your embeddings
Coming up in Lecture 11:

e Modern neural word embeddings
e GloVe and FastText

e Subword tokenization

Office hours: Available if you need help with the notebook!

29



