
Lecture 10: X-Hour Embeddings Workshop

Week 3: Hands-On Dimensionality Reduction and Word Vectors

PSYC 51.07: Models of Language and Communication

PSYC 51.07: Models of Language and Communication

1

Learning Objectives

By the end of this session, you will:

1. Implement classic dimensionality reduction (LSA, LDA)

2. Train and analyze Word2Vec embeddings

3. Visualize high-dimensional embeddings using UMAP

4. Compare different embedding methods on real data

5. Understand semantic relationships captured by embeddings

Workshop format: Hands-on coding with the 20 Newsgroups dataset

PSYC 51.07: Models of Language and Communication

2

Workshop Overview

Today's Agenda:

1. Part 1: Why embeddings? From sparse to dense representations

2. Part 2: LSA - Latent Semantic Analysis with SVD

3. Part 3: LDA - Latent Dirichlet Allocation for topic modeling

4. Part 4: Word2Vec - Neural word embeddings

5. Part 5: Visualizing embeddings with UMAP

6. Part 6: Comparing methods and document classification

Companion notebook: xhour_embeddings_demo.ipynb

PSYC 51.07: Models of Language and Communication

3

Part 1: Why Embeddings?

The problem with sparse representations:

Last week (BoW, TF-IDF):

High dimensional (vocab size)

Sparse (mostly zeros)

No semantic similarity

"dog" and "puppy" are orthogonal

Embeddings:

Low dimensional (50-300 dims)

Dense (all non-zero)

Similar words cluster together

PSYC 51.07: Models of Language and Communication

4

Sparse vs Dense: Concrete Comparison

1# Sparse representation (one-hot / BoW)
2# Vocabulary: [cat, dog, puppy, car, truck, vehicle]
3
4cat_sparse = [1, 0, 0, 0, 0, 0] # 6 dimensions, 5 zeros
5dog_sparse = [0, 1, 0, 0, 0, 0]
6puppy_sparse = [0, 0, 1, 0, 0, 0]
7
8# Cosine similarity: cat-dog = 0, dog-puppy = 0 (orthogonal!)
9
10# Dense embedding (learned from data)
11cat_dense = [0.8, -0.2, 0.5] # 3 dimensions, all non-zero
12dog_dense = [0.7, -0.1, 0.6] # Similar to cat!
13puppy_dense = [0.75, -0.15, 0.55] # Very similar to dog!
14car_dense = [-0.3, 0.9, -0.4] # Different cluster
15
16# Cosine similarity: cat-dog = 0.98, dog-puppy = 0.99

Key insight: Dense embeddings capture that "dog" and "puppy" are semantically related

PSYC 51.07: Models of Language and Communication

5

The Magic of Word Vectors

Famous example: king - man + woman = queen

Vector Arithmetic
Word embeddings capture semantic relationships as directions in space:

Gender direction: woman - man

Royalty direction: king - queen

Pluralization: words - word

Key insight: Meaning encoded as geometry!

PSYC 51.07: Models of Language and Communication

6

Vector Arithmetic: Step-by-Step Example

1import numpy as np
2
3# Pretend embeddings (simplified to 3D for illustration)
4embeddings = {
5 'king': np.array([0.9, 0.8, 0.2]),
6 'queen': np.array([0.85, 0.75, 0.7]),
7 'man': np.array([0.7, 0.6, 0.1]),
8 'woman': np.array([0.65, 0.55, 0.6]),
9}
10
11# The analogy: king - man + woman = ?
12result = embeddings['king'] - embeddings['man'] + embeddings['woman']
13# result = [0.9-0.7+0.65, 0.8-0.6+0.55, 0.2-0.1+0.6]
14# = [0.85, 0.75, 0.7] ← Very close to 'queen'!
15
16# Why does this work?
17# king - man = "royalty" direction = [0.2, 0.2, 0.1]
18# woman + royalty = queen

PSYC 51.07: Models of Language and Communication

7

Part 2: Latent Semantic Analysis (LSA)

Using SVD to find latent topics:

Algorithm:

1. Build TF-IDF matrix

2. Apply Singular Value Decomposition

3. Keep top dimensions

4. Use as word embeddings

Interpretation:

: word-topic associations

: topic strengths

PSYC 51.07: Models of Language and Communication

8

LSA in Code

1from sklearn.decomposition import TruncatedSVD
2from sklearn.feature_extraction.text import TfidfVectorizer
3
4# Build TF-IDF matrix
5tfidf = TfidfVectorizer(max_features=5000, stop_words='english')
6tfidf_matrix = tfidf.fit_transform(documents)
7
8# Apply LSA
9lsa = TruncatedSVD(n_components=100, random_state=42)
10doc_embeddings = lsa.fit_transform(tfidf_matrix)
11word_embeddings = lsa.components_.T
12
13print(f"Explained variance: {lsa.explained_variance_ratio_.sum():.2%}")

Try it: Find similar words using cosine similarity!

PSYC 51.07: Models of Language and Communication

9

LSA: Finding Similar Words

1from sklearn.metrics.pairwise import cosine_similarity
2import numpy as np
3
4# Get vocabulary mapping
5vocab = tfidf.get_feature_names_out()
6word_to_idx = {word: i for i, word in enumerate(vocab)}
7
8def find_similar_words(word, top_n=5):
9 """Find words with similar LSA embeddings."""
10 if word not in word_to_idx:
11 return f"'{word}' not in vocabulary"
12
13 idx = word_to_idx[word]
14 word_vec = word_embeddings[idx].reshape(1, -1)
15
16 # Compute similarities to all words
17 sims = cosine_similarity(word_vec, word_embeddings)[0]
18

PSYC 51.07: Models of Language and Communication

10

LSA: Finding Similar Words

21 return [(vocab[i], f"{sims[i]:.3f}") for i in top_indices]
22
23print(find_similar_words("computer"))
24# Output: [('software', 0.82), ('program', 0.79),
25# ('system', 0.71), ('hardware', 0.68), ('disk', 0.65)]

...continued

PSYC 51.07: Models of Language and Communication

11

Part 3: LDA for Topic Modeling

A probabilistic approach:

Generative Story
LDA imagines documents are created by:

1. Choosing a mixture of topics

2. For each word, picking a topic

3. Sampling a word from that topic

Key difference from LSA:

Probabilistic interpretation

Non-negative weights

More interpretable topics

PSYC 51.07: Models of Language and Communication

12

LDA Example Output

1Topic 0: hockey, game, team, player, season, nhl, play
2Topic 1: space, nasa, launch, orbit, shuttle, satellite
3Topic 2: computer, software, program, file, windows, system
4Topic 3: medical, doctor, patient, disease, health, treatment
5Topic 4: government, president, congress, law, political

Each document is a mixture of topics:

Document #42: 60% Space + 25% Computer + 15% Other

PSYC 51.07: Models of Language and Communication

13

LDA: Complete Working Example

1from sklearn.decomposition import LatentDirichletAllocation
2from sklearn.feature_extraction.text import CountVectorizer
3
4# 20 Newsgroups sample documents
5documents = [
6 "The hockey team scored three goals in the game",
7 "NASA launched a new satellite into orbit",
8 "Install the software program on your computer",
9 "The doctor prescribed medicine for the patient",
10 # ... more documents
11]
12
13# Step 1: Create bag-of-words matrix
14vectorizer = CountVectorizer(max_features=1000, stop_words='english')
15bow_matrix = vectorizer.fit_transform(documents)
16
17# Step 2: Fit LDA
18lda = LatentDirichletAllocation(n_components=5, random_state=42)

PSYC 51.07: Models of Language and Communication

14

LDA: Complete Working Example

21# Step 3: Print topics
22vocab = vectorizer.get_feature_names_out()
23for topic_idx, topic in enumerate(lda.components_):
24 top_words = [vocab[i] for i in topic.argsort()[-7:]]
25 print(f"Topic {topic_idx}: {', '.join(top_words)}")

...continued

PSYC 51.07: Models of Language and Communication

15

Part 4: Word2Vec

Learning embeddings from context:

Skip-gram:
Given target word, predict context

"The cat sat on mat"

cat → the, sat, on

CBOW:
Given context, predict target

the, sat, on → cat

1from gensim.models import Word2Vec
2
3 d l W d2V (

PSYC 51.07: Models of Language and Communication

16

Word2Vec: Semantic Similarity

1# Find similar words
2model.wv.most_similar('computer', topn=5)
3# [('software', 0.82), ('program', 0.79), ('system', 0.75), ...]
4
5# Word analogies
6model.wv.most_similar(
7 positive=['woman', 'king'],
8 negative=['man']
9)
10# [('queen', 0.71), ...]

Hands-on Exercise

Try creating your own word analogies! What works? What fails?

PSYC 51.07: Models of Language and Communication

17

Word2Vec: Exploring Analogies

1# Analogies that typically WORK well:
2model.wv.most_similar(positive=['paris', 'germany'], negative=['france'])
3# → 'berlin' (capital cities)
4
5model.wv.most_similar(positive=['walking', 'swam'], negative=['swimming'])
6# → 'walked' (verb tenses)
7
8model.wv.most_similar(positive=['bigger', 'cold'], negative=['big'])
9# → 'colder' (comparatives)
10
11# Analogies that often FAIL:
12model.wv.most_similar(positive=['doctor', 'woman'], negative=['man'])
13# → might return 'nurse' instead of 'doctor' (reflects bias!)
14
15model.wv.most_similar(positive=['sushi', 'italy'], negative=['japan'])
16# → uncertain results (cultural associations are noisy)

Discussion:Why do some analogies work better than others?

PSYC 51.07: Models of Language and Communication

18

Part 5: Visualizing with UMAP

Projecting 100D → 2D:

1import umap
2
3reducer = umap.UMAP(
4 n_neighbors=15,
5 min_dist=0.1,
6 metric='cosine'
7)
8
9embeddings_2d = reducer.fit_transform(word_vectors)

UMAP advantages:

Faster than t-SNE

Preserves global structure

PSYC 51.07: Models of Language and Communication

19

What You Should See

When you visualize embeddings:

Sports cluster:

hockey, baseball, player, team, game

Space cluster:

nasa, shuttle, orbit, launch, space

Tech cluster:

computer, software, program, windows

Medical cluster:

doctor, patient, hospital, treatment

Related words should cluster together even though we never told themodel they were

PSYC 51.07: Models of Language and Communication

20

UMAP Visualization: Complete Code

1import umap
2import matplotlib.pyplot as plt
3
4# Get word vectors for a subset of interesting words
5words_to_plot = ['hockey', 'baseball', 'player', 'team', 'game',
6 'nasa', 'shuttle', 'orbit', 'space', 'satellite',
7 'computer', 'software', 'program', 'windows', 'disk',
8 'doctor', 'patient', 'hospital', 'disease', 'treatment']
9
10word_vectors = np.array([model.wv[w] for w in words_to_plot])
11
12# Reduce to 2D with UMAP
13reducer = umap.UMAP(n_neighbors=5, min_dist=0.3, metric='cosine')
14embeddings_2d = reducer.fit_transform(word_vectors)
15
16# Plot
17plt.figure(figsize=(12, 8))
18plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], alpha=0.7)

PSYC 51.07: Models of Language and Communication

21

UMAP Visualization: Complete Code

21plt.title("Word Embeddings Visualized with UMAP")
22plt.savefig("word_clusters.png")

...continued

PSYC 51.07: Models of Language and Communication

22

Part 6: Comparing Methods

Method Speed Interpretability Quality Data Needed

LSA Fast Medium Medium Small-Medium

LDA Medium High Medium Medium

Word2Vec Medium Low High Large

Recommendations:

Quick exploration: LSA

Interpretable topics: LDA

Best semantic quality: Word2Vec

PSYC 51.07: Models of Language and Communication

23

Document Classification with Embeddings

Using embeddings as features:

1def document_vector(doc, model):
2 """Average word vectors for document."""
3 tokens = preprocess(doc)
4 vectors = [model.wv[w] for w in tokens if w in model.wv]
5 return np.mean(vectors, axis=0) if vectors else np.zeros(100)
6
7# Train classifier
8X_train = [document_vector(doc, w2v) for doc in train_docs]
9clf = LogisticRegression()
10clf.fit(X_train, y_train)

Compare to TF-IDF baseline!

PSYC 51.07: Models of Language and Communication

24

Classification Comparison: Full Example

1from sklearn.linear_model import LogisticRegression
2from sklearn.model_selection import cross_val_score
3
4# Method 1: TF-IDF baseline
5tfidf = TfidfVectorizer(max_features=5000)
6X_tfidf = tfidf.fit_transform(train_docs)
7clf_tfidf = LogisticRegression(max_iter=1000)
8tfidf_scores = cross_val_score(clf_tfidf, X_tfidf, y_train, cv=5)
9
10# Method 2: LSA embeddings
11lsa = TruncatedSVD(n_components=100)
12X_lsa = lsa.fit_transform(X_tfidf)
13clf_lsa = LogisticRegression(max_iter=1000)
14lsa_scores = cross_val_score(clf_lsa, X_lsa, y_train, cv=5)
15
16# Method 3: Word2Vec embeddings
17X_w2v = np.array([document_vector(doc, model) for doc in train_docs])
18clf_w2v = LogisticRegression(max_iter=1000)

PSYC 51.07: Models of Language and Communication

25

Classification Comparison: Full Example

21print(f"TF-IDF: {tfidf_scores.mean():.3f} (+/- {tfidf_scores.std():.3f})")
22print(f"LSA: {lsa_scores.mean():.3f} (+/- {lsa_scores.std():.3f})")
23print(f"Word2Vec: {w2v_scores.mean():.3f} (+/- {w2v_scores.std():.3f})")

...continued

PSYC 51.07: Models of Language and Communication

26

Key Takeaways

1. Embeddings capture semantic meaning - similar words have similar vectors

2. Different methods, different strengths:

LSA: Fast, linear, interpretable

LDA: Probabilistic, topic-focused

Word2Vec: Neural, best for similarity

3. Visualization reveals structure - UMAP shows semantic clusters

4. Limitations:

Static (one vector per word, no context)

Requires substantial data

Can encode biases

PSYC 51.07: Models of Language and Communication

27

Discussion Questions

1. Why does vector arithmetic work? What does "king - man + woman" really mean
geometrically?

2. Bias in embeddings: If Word2Vec learns from news articles, what biases might it
capture?

3. Window size matters: What happens with window=2 vs window=10?

4. Out-of-vocabulary problem: How do you handle words not in your vocabulary?

5. When to use what: For a sentiment analysis task, would you choose LSA, LDA, or
Word2Vec?

PSYC 51.07: Models of Language and Communication

28

Next Steps

For Assignment 2:

Use embeddings to improve your classifier

Compare at least 2 embedding methods

Visualize your embeddings

Coming up in Lecture 11:

Modern neural word embeddings

GloVe and FastText

Subword tokenization

Office hours: Available if you need help with the notebook!

PSYC 51.07: Models of Language and Communication

29

