PSYC 51.07: Models of Language and Communication

Lecture 10: X-Hour Embeddings Workshop

Week 3: Hands-On Dimensionality Reduction and Word Vectors

PSYC 51.07: Models of Language and Communication

PSYC 51.07: Models of Language and Communication

Learning Objectives

By the end of this session, you will:

1. Implement classic dimensionality reduction (LSA, LDA)
2. Train and analyze Word2Vec embeddings

3. Visualize high-dimensional embeddings using UMAP
4. Compare different embedding methods on real data

5. Understand semantic relationships captured by embeddings

Workshop format: Hands-on coding with the 20 Newsgroups dataset

PSYC 51.07: Models of Language and Communication

Workshop Overview

Today's Agenda:

1. Part 1: Why embeddings? From sparse to dense representations
2.Part 2: LSA - Latent Semantic Analysis with SVD

3. Part 3: LDA - Latent Dirichlet Allocation for topic modeling

4. Part 4: Word2Vec - Neural word embeddings

5. Part 5: Visualizing embeddings with UMAP

6. Part 6: Comparing methods and document classification

Companion notebook: xhour_embeddings_demo. ipynb

PSYC 51.07: Models of Language and Communication

Part 1: Why Embeddings?

The problem with sparse representations:
Last week (BoW, TF-IDF):

e High dimensional (vocab size)
e Sparse (mostly zeros)
e No semantic similarity

e "dog" and "puppy" are orthogonal
Embeddings:
e Low dimensional (50-300 dims)

e Dense (all non-zero)

o Similar words cluster together

PSYC 51.07: Models of Language and Communication

Sparse vs Dense: Concrete Comparison

1# Sparse representation (one-hot / BoW)

2# Vocabulary: [cat, dog, puppy, car, truck, vehicle]
3

4cat_sparse
5dog_sparse
bpuppy_sparse
7

8# Cosine similarity: cat-dog = 0, dog-puppy = @ (orthogonal!)
9

10# Dense embedding (learned from data)

llcat_dense (0.8, -0.2, 0.5] # 3 dimensions, all non-zero
12dog_dense (0.7, -0.1, 0.6] # Similar to cat!
13puppy_dense [0.75, -0.15, 0.55] # Very similar to dog!
14car_dense [-0.3, 0.9, -0.4] # Different cluster

15

16# Cosine similarity: cat-dog = 0.98, dog—puppy = 0.99

[1, 0, 0, 0, 0, 0] # 6 dimensions, 5 zeros
[0, 1, 0, 0, 0, O]
(6, 0, 1, 0, 0, O]

I Avr tvmamtouladkte MNAamma~s ArvslaAaAdAdlm A~aAm Admimt i v~ Flaamad T AaAall A Al o iimnsmi)l AavcAa Acarmacsind i Aasllvy vAlAEA A

PSYC 51.07: Models of Language and Communication

The Magic of Word Vectors

Famous example: king - man + woman = queen

Vector Arithmetic
Word embeddings capture semantic relationships as directions in space:

o Gender direction: woman - man
e Royalty direction: king - queen

e Pluralization: words - word

Key insight: Meaning encoded as geometry!

PSYC 51.07: Models of Language and Communication

Vector Arithmetic: Step-by-Step Example

limport numpy as np

2

3# Pretend embeddings (simplified to 3D for illustration)
4embeddings = {

5 'king': np.array([0.9, 0.8, 0.2])

6 ‘queen': np.array([0.85, 0.75, 0.7]),
7 'man’: np.array([0.7, 0.6, 0.1]),

8 'woman': np.array([0.65, 0.55, 0.6]),
9}

10

11# The analogy: king — man + woman = ?

12result = embeddings['king'] - embeddings['man'] + embeddings['woman']
13# result [0.9-0.7+0.65, 0.8-0.6+0.55, 0.2-0.1+0.6]

144 [0.85, 0.75, 0.7] <« Very close to 'queen'!

15

16# Why does this work?

17# king — man = "royalty" direction = [0.2, 0.2, 0.1]

18# woman + royalty = queen

PSYC 51.07: Models of Language and Communication

Part 2: Latent Semantic Analysis (LSA)

Using SVD to find latent topics:
X ~ UpZi Vi
Algorithm:
1. Build TF-IDF matrix X
2. Apply Singular Value Decomposition

3. Keep top k dimensions

4.Use U}, as word embeddings
Interpretation:

e U: word-topic associations

e X topic strengths

p——

PSYC 51.07: Models of Language and Communication

LSA Iin Code

1from sklearn.decomposition import TruncatedSVD

2from sklearn.feature_extraction.text import TfidfVectorizer

3

4# Build TF-IDF matrix

5tfidf = TfidfVectorizer(max_features=5000, stop_words='english')
6tfidf matrix = tfidf.fit_transform(documents)

7

8# Apply LSA

91lsa = TruncatedSVD(n_components=100, random_state=42)
10doc_embeddings = lsa.fit_transform(tfidf_matrix)
llword_embeddings = lsa.components_.T

12

13print(f"Explained variance: {lsa.explained_variance_ratio_.sum():.2%}")

Try it: Find similar words using cosine similarity!

PSYC 51.07: Models of Language and Communication

LSA: Finding Similar Words

1from sklearn.metrics.pairwise import cosine_similarity
2import numpy as np

3

4# Get vocabulary mapping

5vocab = tfidf.get_feature_names_out()

6word _to_idx = {word: i for i, word in enumerate(vocab)}

7/

8def find_similar_words(word, top_n=5):

9 ""UEind words with similar LSA embeddings.™""
10 if word not in word_to_idx:

11 return f"'{word}' not in vocabulary"

12

13 idx = word_to_idx[word]

14 word_vec = word_embeddings[idx].reshape(1, -1)
15

16 # Compute similarities to all words

17 sims = cosine_similarity(word_vec, word_embeddings) [0]

18

PSYC 51.07: Models of Language and Communication

LSA: Finding Similar Words

21 return [(vocab[i], f"{sims[i]:.3f}") for i in top_indices]
22

23print(find_similar_words (" computer"))

24# Output: [('software', 0.82), ('program', 0.79),

25%# ('system', 0.71), ('hardware', 0.68), ('disk', 0.65)]

...continued

11

PSYC 51.07: Models of Language and Communication

Part 3: LDA for Topic Modeling

A probabilistic approach:

Generative Story

LDA imagines documents are created by:
1. Choosing a mixture of topics
2. For each word, picking a topic

3. Sampling a word from that topic
Key difference from LSA:

e Probabilistic interpretation
e Non-negative weights

e More interpretable topics

12

PSYC 51.07: Models of Language and Communication

LDA Example Output

1Topic
2Topic
3Topic
4Topic
5Topic

AP WNEROS

hockey, game, team, player, season, nhl, play
space, nasa, launch, orbit, shuttle, satellite
computer, software, program, file, windows, system

: medical, doctor, patient, disease, health, treatment
: government, president, congress, law, political

Each document is a mixture of topics:
Document #42: 60% Space + 25% Computer + 15% Other

13

PSYC 51.07: Models of Language and Communication

LDA: Complete Working Example

1from sklearn.decomposition import LatentDirichletAllocation
2from sklearn.feature_extraction.text import CountVectorizer
3

4# 20 Newsgroups sample documents

5documents = [

6 "The hockey team scored three goals in the game",
7/ "'NASA launched a new satellite into orbit",

8 "Install the software program on your computer",
9 "The doctor prescribed medicine for the patient",
10 # ... more documents

11]

12

13# Step 1: Create bag-of—-words matrix

l4vectorizer = CountVectorizer(max_features=1000, stop_words='english')
15bow_matrix = vectorizer.fit _transform(documents)
16

17# Step 2: Fit LDA
181da = LatentDirichletAllocation(n components=5, random state=42)

PSYC 51.07: Models of Language and Communication

LDA: Complete Working Example

21# Step 3: Print topics

22vocab = vectorizer.get_feature_names_out()

23for topic_idx, topic in enumerate(lda.components_):
24 top_words = [vocab[i] for i in topic.argsort()

[-7:11]
25 print(f"Topic {topic_idx}: {', '.join(top_words)}")

...continued

PSYC 51.07: Models of Language and Communication

Part 4: Word2Vec

Learning embeddings from context:

Skip-gram:
Given target word, predict context

"The cat sat on mat"
e cat = the, sat, on

CBOW:
Given context, predict target

the, sat, on - cat

1from gensim.models import Word2Vec
2

— 1 - 'O] I v 7 [

16

PSYC 51.07: Models of Language and Communication

Word2Vec: Semantic Similarity

1# Find similar words

2model.wv.most_similar('computer', topn=5)

3# [('software', 0.82), ('program', 0.79), ('system', 0.75),
4

5# Word analogies

omodel.wv.most_similar(

7 positive=['woman', 'king'],
8 negative=['man"']
9)

10# [('queen', 0.71), ...]

Hands-on Exercise
Try creating your own word analogies! What works? What fails?

]

17

PSYC 51.07: Models of Language and Communication

Word2Vec: Exploring Analogies

1# Analogies that typically WORK well:
2model.wv.most_similar(positive=['paris', 'germany'l, negative=['france'l])
3# -» 'berlin' (capital cities)
4
5model.wv.most_similar(positive=['walking', 'swam'], negative=['swimming'])
6# - 'walked' (verb tenses)
7
8model.wv.most_similar(positive=['bigger', 'cold'], negative=['big'])
9# - 'colder' (comparatives)
10
11# Analogies that often FAIL:
12model.wv.most_similar(positive=['doctor', 'woman'], negative=['man'])
13# - might return 'nurse' instead of 'doctor' (reflects bias!)
14
15model.wv.most_similar(positive=['sushi', 'italy'], negative=['japan'])
16# - uncertain results (cultural associations are noisy)
18

N Aamttmnmeimime \Allavy AlA Amaivma~s A AalAa~atAA vararvl, IMAFEA - FlaAam Al AaD

PSYC 51.07: Models of Language and Communication

Part 5: Visualizing with UMAP

Projecting 100D - 2D:

limport umap

2

3reducer = umap.UMAP(

4 n_neighbors=15,

5 min_dist=0.1,

6 metric="'cosine’

7)

8

9embeddings_2d = reducer.fit_transform(word_vectors)

UMAP advantages:

e Faster than t-SNE

e Preserves global structure

19

PSYC 51.07: Models of Language and Communication

What You Should See

When you visualize embeddings:
Sports cluster:

e hockey, baseball, player, team, game
Space cluster:

e nasa, shuttle, orbit, launch, space
Tech cluster:

e computer, software, program, windows
Medical cluster:

e doctor, patient, hospital, treatment

 _ ' @« D """ ®» P " » P M* n»__ m o ~"“xMr ——"wwv

20

PSYC 51.07: Models of Language and Communication

UMAP Visualization: Complete Code

limport umap

2import matplotlib.pyplot as plt

3

4# Get word vectors for a subset of interesting words
5words_to_plot = ['hockey', 'baseball', 'player', 'team', 'game',

6 ‘nasa’, 'shuttle', 'orbit', 'space', ‘'satellite',

7/ ‘computer', 'software', 'program', ‘'windows', 'disk’',

8 'doctor', 'patient', 'hospital', 'disease', 'treatment']
9

10word_vectors = np.array([model.wv[w] for w in words_to_plot])

11

12# Reduce to 2D with UMAP

13reducer = umap.UMAP(n_neighbors=5, min_dist=0.3, metric='cosine')
1l4embeddings_2d = reducer.fit_transform(word_vectors)

15

16# Plot

17plt.fiqure(figsize=(12, 8))

18plt.scatter(embeddings 2d[:, 01, embeddings 2d[:, 11, alpha=0.7)

21

PSYC 51.07: Models of Language and Communication

UMAP Visualization: Complete Code

21plt.title("Word Embeddings Visualized with UMAP")
22plt.savefig("word_clusters.png")

...continued

22

PSYC 51.07: Models of Language and Communication

Part 6: Comparing Methods

Method Speed Interpretability Quality Data Needed

LSA Fast Medium Medium Small-Medium
LDA Medium High Medium Medium
Word2Vec Medium Low High Large

Recommendations:

e Quick exploration: LSA
e |Interpretable topics: LDA

o Best semantic quality: Word2Vec

23

PSYC 51.07: Models of Language and Communication

Document Classification with Embeddings

Using embeddings as features:

ldef document_vector(doc, model):

2 """Average word vectors for document.'""

3 tokens = preprocess(doc)

4 vectors = [model.wv[w] for w in tokens if w in model.wv]

5 return np.mean(vectors, axis=0) if vectors else np.zeros(100)
6

7# Train classifier

8X_train = [document_vector(doc, w2v) for doc in train_docs]

9clf = LogisticRegression()

10clf.fit(X_train, y_train)

Compare to TF-IDF baseline!

24

PSYC 51.07: Models of Language and Communication

Classification Comparison: Full Example

1from sklearn.linear_model import LogisticRegression

2from sklearn.model_selection import cross_val_score

3

4# Method 1: TF-IDF baseline

5tfidf = TfidfVectorizer(max_features=5000)

6X_tfidf = tfidf.fit _transform(train_docs)

7clf_tfidf = LogisticRegression(max_iter=1000)

8tfidf_scores = cross_val_score(clf_tfidf, X_tfidf, y_train, cv=5)
9

10# Method 2: LSA embeddings

111sa = TruncatedSVD(n_components=100)

12X _1lsa = lsa.fit_transform(X_tfidf)

13c1f_1sa = LogisticRegression(max_iter=1000)

141sa_scores = cross_val_score(clf_lsa, X _1lsa, y_train, cv=5)

15

16# Method 3: Word2Vec embeddings

17X_w2v = np.array([document_vector(doc, model) for doc in train_docs])
18c1f w2v = LogisticRegression(max iter=1000)

25

PSYC 51.07: Models of Language and Communication

Classification Comparison: Full Example

21print (f"TF-IDF: {tfidf_scores.mean():.3f} (+/- {tfidf_scores.std():.3f})")
22print (f"LSA: {lsa_scores.mean():.3f} (+/- {lsa_scores.std():.3f})")
23print(f"Word2Vec: {w2v_scores.mean():.3f} (+/- {w2v_scores.std():.3f})")

...continued

26

PSYC 51.07: Models of Language and Communication

Key Takeaways

1. Embeddings capture semantic meaning - similar words have similar vectors
2. Different methods, different strengths:

o LSA: Fast, linear, interpretable
o LDA: Probabilistic, topic-focused

o Word2Vec: Neural, best for similarity
3. Visualization reveals structure - UMAP shows semantic clusters
4. Limitations:

o Static (one vector per word, no context)
o Requires substantial data

o Can encode biases

27

PSYC 51.07: Models of Language and Communication

Discussion Questions

1. Why does vector arithmetic work? What does "king - man + woman" really mean
geometrically?

2.Bias in embeddings: If Word2Vec learns from news articles, what biases might it
capture?

3. Window size matters: What happens with window=2 vs window=107?
4. Out-of-vocabulary problem: How do you handle words not in your vocabulary?

5. When to use what: For a sentiment analysis task, would you choose LSA, LDA, or
Word2Vec?

28

PSYC 51.07: Models of Language and Communication

Next Steps

For Assignment 2:

o Use embeddings to improve your classifier
o Compare at least 2 embedding methods

e Visualize your embeddings
Coming up in Lecture 11:

e Modern neural word embeddings
e GloVe and FastText

e Subword tokenization

Office hours: Available if you need help with the notebook!

29

