Jeremy R. Ma
Dartmouth College
Winter 2026



Learning objectives

By the end of this lecture, you will

1. Understand part-of-speech (POS) tagging and its applications
2. Explore how neural networks learn grammatical structure

3. Apply sentiment analysis to real-world text

4. Fine-tune pre-trained models for domain-specific tasks

5. Critically evaluate whether models "understand" language

Central questions

o Can statistical patterns capture grammatical knowledge?
« What does it mean for a model to "understand" emotion?



Part-of-speech (POS) tagging

What is POS tagging?
« Assigning grammatical category to each word
« Categories: noun, verb, adjective, adverb, pronoun, preposition, etc.
« A fundamental NLP task

Example

The cat sat on the mat
DET NOUN VERB ADP DET NOUN

Why it matters
« Disambiguation: "book" as noun vs. verb
« Syntax parsing and understanding

. Information extraction, machine translation



POS tagsets: Universal vs. fine-grained

Universal POS (17 tags): Penn Treebank (45+ tags):

« ADJ, ADV, ADP, AUX o« NN/NNS/NNP/NNPS (nouns)

« CONJ, DET, NOUN, NUM « VB/VBD/VBG/VBN/VBP/VBZ (verbs)
« PRON, PROPN, VERSB, ... e Much finer distinctions!

Trade-off
Simplicity vs. linguistic detail



Context matters: Ambiguous words

Sentence Word POS Explanation
"| read a book" book NOUN Object being read
"Please book a table" book VERB Action of reserving
"She runs fast" fast ADV Modifies "runs"
"] will fast today" fast VERB Action of not eating
"Please close the door" close VERB Action
"Stay close to me" close ADV Modifies position
Key insight

Context determines POS! Models must look at surrounding words.




spaCy resolves ambiguity using context

Code example

import spacy
nlp = spacy.load("en_core_web_sm")

sentences = [

"I need to book a flight", # book = VERB
"I'm reading a great book", # book = NOUN
"The record was broken", # record = NOUN
"Please record the meeting", # record = VERB

for sent in sentences:
doc = nlp(sent)
for token 1in doc:
if token.text.lower() in ["book", "record"]:
print(f'"{sent}"")
print(f' "{token.text}" — {token.pos_}

\\\\\

continued...



spaCy resolves ambiguity using context

print()

The model uses surrounding words to disambiguate

"to book" vs "a book" — contextis everything!

...continued



POS tagging with spaCy

import spacy
nlp = spacy.load("en_core_web_sm")

sentence = "She will book the meeting room tomorrow"
doc = nlp(sentence)

print(f"{'Word':<12} {'P0OS':<8} {'Tag':<8} {'Explanation'}")
for token 1in doc:

print(f"{token.text:<12} {token.pos_ :<8} {token.tag :<8}
{spacy.explain(token.pos_)}")

# Output:

# She PRON PRP pronoun, personal

# will AUX MD verb, modal auxiliary
Notice

"book" correctly identified as VERB!



How do POS taggers work?

Traditional approaches (pre-

neural):

» Rule-based: Hand-crafted
grammar rules

» Hidden Markov Models
(HMMs): Probabilistic

sequences

« Conditional Random Fields
(CRFecY <+riictiirad

Modern neural approaches:

« Recurrent Neural Networks
(RNNs/LSTMs): Process
sequences

« Transformers (BERT, etc.):
Bidirectional context

« Fine-tune pre-trainea
models on POS data



Neural networks and grammar

Can neural networks learn syntactic structure?

Classic test: Subject-verb agreement (Linzen et al., 2016)

[ The key } == { to the cabinets } —> [ is/are? ] —> { }

Challenge: Distractor nouns between subject and verb

The challenge
« Model must identify "key" (singular) as subject
« Ignore "cabinets" (plural distractor)

« Predict correct verb form "is" (not "are")

Finding
LSTMs can learn this! But they struggle with complex cases.
Reference: Linzen, Dupoux, & Goldberg (2016). TACL.



BLiMP: Testing linguistic knowledge

BLIMP Dataset Acceptable Unacceptable
« 67,000 minimal pairs across 67 paradigms
« Tests syntax, semantics, morphology "Who did you see?" "Who did you saw?"
 Task: Model assigns higher P to acceptable sentence ) ,
"l think that she left" "| think that she leave"
Result
i Reference: Warstadt et al. (2020). TACL.

Transformers (BERT, GPT-2) score 70-85%, but not perfect!



Token classification with HuggingFace

from transformers import pipeline

pos_tagger = pipeline("token-classification",
model="vblagoje/bert-english-uncased-finetuned-pos",
aggregation_strategy="simple")

sentence = "Apple Inc. 1s looking at buying a UK startup"
results = pos_tagger(sentence)

for result 1n results:
print(f"{result['word']:<15} {result['entity group']:<8}
({result['score']:.3f})")
# Apple PROPN (0.998)
# Tnc. PROPN (0.995K)

Further reading

HuggingFace Chapter 7.2: Token Classification



https://huggingface.co/learn/nlp-course/chapter7/2

Discussion: Do models "understand” grammar?

Perspectives to consider
1. Chomsky's view: Grammar requires innate, symbolic rules
o Can statistical patterns truly capture grammatical knowledge?

2. Emergentist view: Grammar emerges from usage patterns

o Maybe neural networks learn similarly to humans?
3. Functional perspective: If it works, does it matter?
o Models perform well on tasks—is that "understanding"?

4. Limitations: Models still fail on edge cases

o What does this tell us about their knowledge?

Your thoughts?

s pattern matching sufficient for grammatical competence?



Sentiment analysis determines emotional tone of
text

Applications: Granularity levels:

« Social media monitoring - Binary: positive/negative

« Customer feedback analysis  « Ternary:

. Market research positive/negative/neutral

. Review analysis » Fine-grained: 1-5 stars

. Political tracking « Continuous: sentiment

Score



Sentiment analysis challenges

1. Sarcasm and irony 4. Negation
« "Oh great, another meeting" (negative, despite "great") e "not good" vs. "good"
 "This is the best movie I've ever fallen asleep to" « "l don't dislike it" (double negative = positive?)
(negativel)
5. Domain specificity
2. Context-dependent sentiment « "Explosive growth" (positive in business, negative in
« "This movie is sick!" (positive in slang, negative literally) safety)
o "The book was long" (neutral? negative?) « Different domains have different sentiment patterns

3. Mixed sentiment
« "Great food but terrible service" (both positive and
negative)
 Aspect-based sentiment: food=positive,
service=negative



Testing how models handle tricky cases

Kav findina

from transformers import pipeline
sentiment = pipeline("sentiment-analysis")

tricky_cases = [

("Oh great, another Monday meeting", "NEGATIVE"),

("This movie is not bad at all", "POSITIVE"),
Negation

("I don't dislike this product", "POSITIVE"),
negative

("Great camera but terrible battery life", "MIXED"),
sentiment

]

for text, expected in tricky_cases:
result = sentiment(text)[0]
print(f"{text}")

print(f" Model: {result['label']} ({result['score']

Sentiment challenges: Code examples

# Sarcasm
/7

# Double

# Mixed

:.3f}) |



Sentiment lexicons: words with predefined
sentiment scores

Popular lexicons:

« AFINN: -5 to +5 ratings

 SentiWordNet:
pos/neg/neutral

« VADER: Social media
focused

[ ) [ ) [ )
l trmatEadtiAanmes lAnArae ~AntFAavy

Example (AFINN):

Word Score
great +3
good +3
hate -3

tarrible




Lexicon-based sentiment analysis

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()

texts = ["I love this product! It's amazing!", "This is the worst
experience ever.",
"It's okay, nothing special.", "Great food but terrible

service!"]

for text in texts:

scores = analyzer.polarity scores(text)

print(f"{text}")

print(f" Pos: {scores['pos']:.2f}, Neg: {scores['neg']:.2f},
Compound: {scores['compound']:.3f}\n")
# VADER handles emoji and punctuation! "Great!!!" scores higher than

o= N



Modern approach: Pre-trained models

Neural network advantages
o Learn context-dependent representations
 Capture word order and negation
 Handle sarcasm better (though still imperfect)
« Transfer learning: pre-train on large corpus, fine-tune for sentiment

Input Text J —_— [ Pre-trained Model (BERT) ] —_— Classification Head —_— [ Sentiment Label

Typical neural sentiment analysis architecture

Training

Fine-tune on labeled sentiment data (IMDb, Amazon reviews, etc.)



VADER vs Neural: Head-to-head comparison

Testing both approaches on the same examples

from vaderSentiment.vaderSentiment import
SentimentIntensityAnalyzer
from transformers import pipeline

vader = SentimentIntensityAnalyzer()
neural = pipeline("sentiment-analysis")

test _cases = [
"I absolutely love this product!",
"This 1s not what I expected, but in a good way",
"The movie was so bad i1t was actually hilarious",

for text in test_cases:
v_score = vader.polarity_scores(text)['compound']
n_result = neural(text)[?]

continued...



VADER vs Neural: Head-to-head comparison

print(f"Text: {text}")
print(f" VADER: {v_score:+.3f} ({'POS' if v_score > 0 else 'NEG'})")
print(f" Neural: {n_result['label']} ({n_result['score']:.3f})\n")

Key finding

Neural models handle nuance better, but VADER is faster and interpretable.

...continued



Sentiment analysis with HuggingFace

from transformers import pipeline
sentiment_analyzer = pipeline("sentiment-analysis")

texts = ["I love this product! It's amazing!", "This is the worst
experience ever.",

"It's okay, nothing special.", "I don't hate 1t, but I don't
love it either."]

for text i1n texts:

result = sentiment_analyzer(text)[0]

print(f"{text}")

print(f" {result['label']}, Confidence: {result['score']:.3f}\n")
# "I love this product!" » POSITIVE (0.999)

Further reading

HuggingFace Chapter 1.2: NLP Tasks



https://huggingface.co/learn/nlp-course/chapter1/2

Domain-specific sentiment models

Problem Domain Model Data
General models miss domain-specific language
Medical BioBERT Patient feedback

Solution . . )
Fine-tune on domain-specific datal! e i B Social posts

; . 52 Products RoBERTa Amazon reviews

Why it works: Domain-specific vocabulary

("bullish" in finance = positive), different MleEE =l Buble rvists

sentiment expressions, adapted conventions.



Comparing general vs. domain-specific

from transformers import pipeline
general = pipeline("sentiment-analysis")
financial = pipeline("sentiment-analysis", model="ProsusAI/finbert")

texts = ["The company's earnings exceeded expectations",

"Revenue declined but margins improved", "Stock prices
plummeted" ]

for text in texts:
gen = general(text)[0]
fin = financial(text)[0]
print(f"{text}")
print(f" General: {gen['label']} ({gen['score']:.3f}) | "
f"Financial: {fin['label']} ({fin['score']:.3f})\n")

# Financrial mndel nften mnre Aarciivrate fnr finanre teoyt !



Fine-tuning for sentiment analysis

Process overview

1. Start with pre-trained model (BERT, RoBERTa) — already knows language
2. Prepare labeled dataset — text + sentiment labels (pos/neg/neutral)

3. Add classification head — dense layer outputting class probabilities

4. Fine-tune on sentiment data — much faster than training from scratch!

5. Evaluate — accuracy, precision, recall, F1-score

Further reading

HuggingFace Chapter 3.2: Processing_Data for Fine-tuning



https://huggingface.co/learn/nlp-course/chapter3/2

Fine-tuning example (simplified)

from transformers import AutoModelForSequenceClassification, Trailner,
TrainingArguments

# 1. Load pre-trained model

model = AutoModelForSequenceClassification.from_pretrained("bert-base-
uncased", num_labels=2)

# 2. Define training arguments
training_args = TrainingArguments(output_dir="./results",
num_train_epochs=3,

per_device_train_batch_size=16, evaluation_strategy="epoch")

# 3. Create Trainer and train (train_dataset, eval dataset prepared
separately)



Evaluation metrics for sentiment analysis

Beyond accuracy
« Precision: Of predicted positives, how many are truly positive?
Precision = LN
TP + FP
« Recall: Of actual positives, how many did we catch?
TP
Recall = TN
« F1-Score: Harmonic mean of precision and recall
Precision x Recall

El="2 —
4 Precision 4+ Recall

Why not just accuracy?
« Imbalanced datasets (e.g., 0% positive reviews)
. Different costs for false positives vs. false negatives
. F1 gives balanced view of model performance



Confusion matrix example

Predic | Predic

ted ted
Positi | Negat

ve ive

Actual
Positi il DR
G0 10
ve

Actual

TN =

Metrics
« Accuracy = (90 + 95) /
200 = 92%
e Precision = 90/ 95 =
95%
e Recall =90/ 100 =
90%

« F1 =2 x (0.95 x 0.90)
/ (0.95 + 0.90) = 92%



Aspect-based sentiment analysis

Problem

Reviews often mention multiple aspects with different sentiments

Example

"The food was delicious but the service was terrible. The atmosphere was okay."

« Food: Positive
« Service: Negative
« Atmosphere: Neutral

Applications:

e Restaurant reviews: food, service,
ambiance, price

« Product reviews: quality, price, shipping,
customer service

« Hotel reviews: room, location, staff,
cleanliness

Key insight
More nuanced than overall sentiment! Provides actionable
insights.



Aspect-based sentiment: Worked example

review = """The pasta was
incredible - best I've had!
However, we wailted min which

was frustrating.
Ambiance was nice but loud.
Prices reasonable."""

aspects = {

"food": ["pasta",
"incredible"], # POSITIVE
"service": ["waited",

"frustrating"], # NEGATIVE

"ambiance": ["nice", "loud"],

# MIXED
"price": ["reasonable"]
# POSITIVE

}

Aspect Sentiment
Food POSITIVE
Service NEGATIVE
Ambiance MIXED
Price POSITIVE
Actionable

Focus on improving wait times!




Real-world application: Product review analysis

Business value
o Identity product strengths and weaknesses
o Track sentiment trends over time
« Compare against competitors
o Prioritize product improvements

[ Collect Reviews ] — [ Extract Aspects ] —> Analyze Sentiment — [ Generate Insights J

Product review analysis pipeline

Example insights
 Product A: Stable positive sentiment
 Product B: Declining sentiment — investigate quality issues!



Hands-on exercise

Try this yourself
1. Collect data:

o Scrape product reviews (Amazon, Yelp)
o Or use public dataset (IMDb, Twitter)
2. Compare approaches:

o Lexicon-based (VADER)
o General pre-trained model (HuggingFace pipeline)
o Domain-specific model (if available)

3. Analyze results:

o Where do models disagree?
o Which handles sarcasm better?
o Which is most accurate for your domain?

4. Bonus: Fine-tune a model on your specific dataset!



Discussion: Understanding emotion

Philosophical questions

1. Can models "feel" sentiment?
o They predict labels, but do they understand emotion?

2. Is sentiment objective or subjective?
o Different annotators may disagree on sentiment
o How do models handle ambiguity?

3. Cultural and linguistic variation:

o Sentiment expressions vary across cultures
o Can models capture these nuances?

4. Ethical considerations:

o Automated sentiment analysis in hiring, lending...
o Risks of bias and discrimination
o Should we trust model judgments?



Week 2: Each step builds on the previous one

[ Data Cleaning ] —— [ Tokenization } —> ( POS Tagging ] — = Sentiment Analysis

The NLP pipeline

 Data cleaning: Remove - POS tagging: Grammar
noise structure
« Tokenization: Break into « Sentiment: Emotional

units meaning



Assignment 2: SPAM email classifier

Your task

Build a classifier to detect spam emails

Apply this week's concepts: Think about:

« Data cleaning: Remove HTML tags, « What makes spam different from
normalize text legitimate emails?

« Tokenization: Try different tokenizers « How does preprocessing affect accuracy?
(word, subword) « Can you use sentiment as a feature?

« Features: Extract useful signals (POS . What about POS patterns? (e.g., spam has
patterns, sentiment?) more imperatives?)

» Classification: Train a model to identify
spam

Link
Assianment 2: SPAM classifier


https://github.com/ContextLab/llm-course/tree/main/assignments/Assignment%202%3A%20SPAM%20classifier

Key takeaways

What we learned

1.

POS tagging reveals grammatical structure — Neural nets learn syntax, but do they "understand”

it?

Sentiment analysis extracts emotional meaning — Lexicons — neural networks; domain fine-tuning
helps

Statistical learning powers modern NLP — Models learn patterns without explicit rules

Context is crucial — Words are ambiguous; Transformers excel at capturing context
Critical thinking matters — Question what "understanding" means; be aware of biases



Primary references

POS tagging and syntax: HuggingFace resources:

« Linzen, Dupoux, & Goldberg (2016). « Chapter 1.2: NLP Tasks with Pipeline
Assessing the Ability of LSTMs to Learn . Chapter 3.2: Processing_Data for Fine-
Syntax-Sensitive Dependencies. TACL. tuning

» Warstadt et al. (2020). BLIMP: The « Chapter 7.2: Token Classification
Benchmark of Linguistic Minimal Pairs.

TACL.
Sentiment analysis:

« Pang & Lee (2008). Opinion Mining and
Sentiment Analysis. Foundations and
Trends in IR.

« Hutto & Gilbert (2014). VADER: A


https://huggingface.co/learn/nlp-course/chapter1/2
https://huggingface.co/learn/nlp-course/chapter3/2
https://huggingface.co/learn/nlp-course/chapter3/2
https://huggingface.co/learn/nlp-course/chapter7/2

Looking ahead: Weeks 3-4

Next topics
« Dimensionality reduction (PCA, UMAP)
« Bag-of-words and TF-IDF
« Word embeddings (Word2Vec, GloVe)
« Distributional semantics

Central question

"You shall know a word by the company it keeps"

How can we represent word meaning computationally?

Prepare by
« Completing Assignment 2
- Thinking about: What is "meaning"? How would you define it?

. Exploring: Vector representations and semantic similarity



Additional resources

Tools and libraries:

» spaCy: https://spacy.io/ . IM

Datasets:

Db Movie Reviews:

0s://ai.stanford.edu/~amaas

« HuggingFace Transformers: ht

https://huggingtace.co/docs/transforamws/ Product Reviews:

« VADER Sentiment: https://registry.opendata.aws/:
https://github.com/cjhutto/vadesSsamoedtSentiment Treebank:

https://nlp.stanford.edu/sentin

Intaractive demaoc


https://spacy.io/
https://huggingface.co/docs/transformers/
https://github.com/cjhutto/vaderSentiment
https://ai.stanford.edu/~amaas/data/sentiment/
https://registry.opendata.aws/amazon-reviews/
https://nlp.stanford.edu/sentiment/

Questions? Want to chat more?

Email me Join our Discord Come to office hours

Congratulations!

Week 2 complete! See you in Week 3!


mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

