
Lecture 8: POS Tagging &

Sentiment Analysis
PSYC 51.07: Models of language and communication

Jeremy R. Manning

Dartmouth College

Winter 2026

Learning objectives

By the end of this lecture, you will

1. Understand part-of-speech (POS) tagging and its applications

2. Explore how neural networks learn grammatical structure

3. Apply sentiment analysis to real-world text

4. Fine-tune pre-trained models for domain-specific tasks

5. Critically evaluate whether models "understand" language

Central questions

Can statistical patterns capture grammatical knowledge?

What does it mean for a model to "understand" emotion?

Part-of-speech (POS) tagging

What is POS tagging?

Assigning grammatical category to each word

Categories: noun, verb, adjective, adverb, pronoun, preposition, etc.

A fundamental NLP task

Example

1 The cat sat on the mat

2 DET NOUN VERB ADP DET NOUN

Why it matters

Disambiguation: "book" as noun vs. verb

Syntax parsing and understanding

Information extraction, machine translation

POS tagsets: Universal vs. fine-grained

Universal POS (17 tags):

ADJ, ADV, ADP, AUX

CONJ, DET, NOUN, NUM

PRON, PROPN, VERB, ...

Penn Treebank (45+ tags):

NN/NNS/NNP/NNPS (nouns)

VB/VBD/VBG/VBN/VBP/VBZ (verbs)

Much finer distinctions!

Trade-off

Simplicity vs. linguistic detail

Context matters: Ambiguous words
Sentence Word POS Explanation

"I read a book" book NOUN Object being read

"Please book a table" book VERB Action of reserving

"She runs fast" fast ADV Modifies "runs"

"I will fast today" fast VERB Action of not eating

"Please close the door" close VERB Action

"Stay close to me" close ADV Modifies position

Key insight

Context determines POS! Models must look at surrounding words.

spaCy resolves ambiguity using context

Code example

1 import spacy

2 nlp = spacy.load("en_core_web_sm")

3

4 sentences = [

5 "I need to book a flight", # book = VERB

6 "I'm reading a great book", # book = NOUN

7 "The record was broken", # record = NOUN

8 "Please record the meeting", # record = VERB

9]

10

11 for sent in sentences:

12 doc = nlp(sent)

13 for token in doc:

14 if token.text.lower() in ["book", "record"]:

15 print(f'"{sent}"')

16 print(f' "{token.text}" -> {token.pos_}
({ l i (k)})') continued...

spaCy resolves ambiguity using context

17 print()

...continued

The model uses surrounding words to disambiguate

"to book" vs "a book" — context is everything!

POS tagging with spaCy

1 import spacy

2 nlp = spacy.load("en_core_web_sm")

3

4 sentence = "She will book the meeting room tomorrow"
5 doc = nlp(sentence)

6

7 print(f"{'Word':<12} {'POS':<8} {'Tag':<8} {'Explanation'}")

8 for token in doc:

9 print(f"{token.text:<12} {token.pos_:<8} {token.tag_:<8}
{spacy.explain(token.pos_)}")

10

11 # Output:

12 # She PRON PRP pronoun, personal

13 # will AUX MD verb, modal auxiliary

Notice

"book" correctly identified as VERB!

How do POS taggers work?

Traditional approaches (pre-

neural):

Rule-based: Hand-crafted

grammar rules

Hidden Markov Models

(HMMs): Probabilistic

sequences

Conditional Random Fields

(CRFs): Structured

Modern neural approaches:

Recurrent Neural Networks

(RNNs/LSTMs): Process

sequences

Transformers (BERT, etc.):

Bidirectional context

Fine-tune pre-trained

models on POS data

Neural networks and grammar

Can neural networks learn syntactic structure?

Classic test: Subject-verb agreement (Linzen et al., 2016)

The key to the cabinets is/are? ...

Challenge: Distractor nouns between subject and verb

The challenge

Model must identify "key" (singular) as subject

Ignore "cabinets" (plural distractor)

Predict correct verb form "is" (not "are")

Finding

LSTMs can learn this! But they struggle with complex cases.

Reference: Linzen, Dupoux, & Goldberg (2016). TACL.

BLiMP: Testing linguistic knowledge

Acceptable Unacceptable

"Who did you see?" "Who did you saw?"

"I think that she left" "I think that she leave"

Reference: Warstadt et al. (2020). TACL.

BLiMP Dataset

67,000 minimal pairs across 67 paradigms

Tests syntax, semantics, morphology

Task: Model assigns higher P to acceptable sentence

Results

Transformers (BERT, GPT-2) score 70-85%, but not perfect!

Token classification with HuggingFace

1 from transformers import pipeline

2 pos_tagger = pipeline("token-classification",

3 model="vblagoje/bert-english-uncased-finetuned-pos",

4 aggregation_strategy="simple")

5

6 sentence = "Apple Inc. is looking at buying a UK startup"

7 results = pos_tagger(sentence)

8

9 for result in results:

10 print(f"{result['word']:<15} {result['entity_group']:<8}
({result['score']:.3f})")

11 # Apple PROPN (0.998)

12 # Inc. PROPN (0.995)

Further reading

HuggingFace Chapter 7.2: Token Classification

https://huggingface.co/learn/nlp-course/chapter7/2

Discussion: Do models "understand" grammar?

Perspectives to consider

1. Chomsky's view: Grammar requires innate, symbolic rules
Can statistical patterns truly capture grammatical knowledge?

2. Emergentist view: Grammar emerges from usage patterns
Maybe neural networks learn similarly to humans?

3. Functional perspective: If it works, does it matter?
Models perform well on tasks—is that "understanding"?

4. Limitations: Models still fail on edge cases
What does this tell us about their knowledge?

Your thoughts?

Is pattern matching sufficient for grammatical competence?

Sentiment analysis determines emotional tone of

text

Applications:

Social media monitoring

Customer feedback analysis

Market research

Review analysis

Political tracking

Granularity levels:

Binary: positive/negative

Ternary:

positive/negative/neutral

Fine-grained: 1-5 stars

Continuous: sentiment

score

Sentiment analysis challenges

1. Sarcasm and irony

"Oh great, another meeting" (negative, despite "great")

"This is the best movie I've ever fallen asleep to"
(negative!)

2. Context-dependent sentiment

"This movie is sick!" (positive in slang, negative literally)

"The book was long" (neutral? negative?)

3. Mixed sentiment

"Great food but terrible service" (both positive and
negative)

Aspect-based sentiment: food=positive,
service=negative

4. Negation

"not good" vs. "good"

"I don't dislike it" (double negative = positive?)

5. Domain specificity

"Explosive growth" (positive in business, negative in
safety)

Different domains have different sentiment patterns

Sentiment challenges: Code examples

Testing how models handle tricky cases

1 from transformers import pipeline

2 sentiment = pipeline("sentiment-analysis")

3

4 tricky_cases = [

5 ("Oh great, another Monday meeting", "NEGATIVE"), # Sarcasm

6 ("This movie is not bad at all", "POSITIVE"), #

Negation

7 ("I don't dislike this product", "POSITIVE"), # Double

negative

8 ("Great camera but terrible battery life", "MIXED"), # Mixed

sentiment

9]

10

11 for text, expected in tricky_cases:

12 result = sentiment(text)[0]

13 print(f"{text}")

14 print(f" Model: {result['label']} ({result['score']:.3f}) |

Key finding

Sentiment lexicons: words with predefined

sentiment scores

Popular lexicons:

AFINN: -5 to +5 ratings

SentiWordNet:

pos/neg/neutral

VADER: Social media

focused

Limitations: Ignores context

Example (AFINN):

Word Score

great +3

good +3

hate -3

terrible -3

Lexicon-based sentiment analysis

1 from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

2 analyzer = SentimentIntensityAnalyzer()

3

4 texts = ["I love this product! It's amazing!", "This is the worst

experience ever.",

5 "It's okay, nothing special.", "Great food but terrible
service!"]

6

7 for text in texts:

8 scores = analyzer.polarity_scores(text)

9 print(f"{text}")

10 print(f" Pos: {scores['pos']:.2f}, Neg: {scores['neg']:.2f},

Compound: {scores['compound']:.3f}\n")

11 # VADER handles emoji and punctuation! "Great!!!" scores higher than
"Great"

Modern approach: Pre-trained models

Neural network advantages

Learn context-dependent representations

Capture word order and negation

Handle sarcasm better (though still imperfect)

Transfer learning: pre-train on large corpus, fine-tune for sentiment

Input Text Pre-trained Model (BERT) Classification Head Sentiment Label

Typical neural sentiment analysis architecture

Training

Fine-tune on labeled sentiment data (IMDb, Amazon reviews, etc.)

VADER vs Neural: Head-to-head comparison

Testing both approaches on the same examples

1 from vaderSentiment.vaderSentiment import

SentimentIntensityAnalyzer

2 from transformers import pipeline

3

4 vader = SentimentIntensityAnalyzer()

5 neural = pipeline("sentiment-analysis")

6

7 test_cases = [

8 "I absolutely love this product!",

9 "This is not what I expected, but in a good way",

10 "The movie was so bad it was actually hilarious",

11]

12

13 for text in test_cases:

14 v_score = vader.polarity_scores(text)['compound']

15 n_result = neural(text)[0]

continued...

VADER vs Neural: Head-to-head comparison

16 print(f"Text: {text}")

17 print(f" VADER: {v_score:+.3f} ({'POS' if v_score > 0 else 'NEG'})")

18 print(f" Neural: {n_result['label']} ({n_result['score']:.3f})\n")

...continued

Key finding

Neural models handle nuance better, but VADER is faster and interpretable.

Sentiment analysis with HuggingFace

1 from transformers import pipeline

2 sentiment_analyzer = pipeline("sentiment-analysis")

3

4 texts = ["I love this product! It's amazing!", "This is the worst
experience ever.",

5 "It's okay, nothing special.", "I don't hate it, but I don't
love it either."]

6

7 for text in texts:

8 result = sentiment_analyzer(text)[0]

9 print(f"{text}")

10 print(f" {result['label']}, Confidence: {result['score']:.3f}\n")

11 # "I love this product!" → POSITIVE (0.999)
Further reading

HuggingFace Chapter 1.2: NLP Tasks

https://huggingface.co/learn/nlp-course/chapter1/2

Domain-specific sentiment models

Why it works: Domain-specific vocabulary

("bullish" in finance = positive), different

sentiment expressions, adapted conventions.

Domain Model Data

Medical BioBERT Patient feedback

Twitter TwitterBERT Social posts

Products RoBERTa Amazon reviews

Movies BERT IMDb reviews

Problem

General models miss domain-specific language

Solution

Fine-tune on domain-specific data!

Comparing general vs. domain-specific

1 from transformers import pipeline

2 general = pipeline("sentiment-analysis")

3 financial = pipeline("sentiment-analysis", model="ProsusAI/finbert")

4

5 texts = ["The company's earnings exceeded expectations",
6 "Revenue declined but margins improved", "Stock prices

plummeted"]

7

8 for text in texts:

9 gen = general(text)[0]

10 fin = financial(text)[0]

11 print(f"{text}")

12 print(f" General: {gen['label']} ({gen['score']:.3f}) | "
13 f"Financial: {fin['label']} ({fin['score']:.3f})\n")
14 # Financial model often more accurate for finance text!

Fine-tuning for sentiment analysis

Process overview

1. Start with pre-trained model (BERT, RoBERTa) — already knows language

2. Prepare labeled dataset — text + sentiment labels (pos/neg/neutral)

3. Add classification head — dense layer outputting class probabilities

4. Fine-tune on sentiment data — much faster than training from scratch!

5. Evaluate — accuracy, precision, recall, F1-score

Further reading

HuggingFace Chapter 3.2: Processing Data for Fine-tuning

https://huggingface.co/learn/nlp-course/chapter3/2

Fine-tuning example (simplified)

1 from transformers import AutoModelForSequenceClassification, Trainer,
TrainingArguments

2

3 # 1. Load pre-trained model

4 model = AutoModelForSequenceClassification.from_pretrained("bert-base-
uncased", num_labels=2)

5

6 # 2. Define training arguments

7 training_args = TrainingArguments(output_dir="./results",
num_train_epochs=3,

8 per_device_train_batch_size=16, evaluation_strategy="epoch")

9

10 # 3. Create Trainer and train (train_dataset, eval_dataset prepared
separately)

11 trainer = Trainer(model=model args=training args

Evaluation metrics for sentiment analysis

Beyond accuracy

Precision: Of predicted positives, how many are truly positive?

Recall: Of actual positives, how many did we catch?

F1-Score: Harmonic mean of precision and recall

Precision = ​

TP + FP
TP

Recall = ​

TP + FN
TP

F 1 = 2 × ​

Precision + Recall

Precision × Recall

Why not just accuracy?

Imbalanced datasets (e.g., 90% positive reviews)

Different costs for false positives vs. false negatives

F1 gives balanced view of model performance

Confusion matrix example

Predic

ted

Positi

ve

Predic

ted

Negat

ive

Actual

Positi

ve

TP =

90

FN =

10

Actual

N FP 5
TN =

Metrics

Accuracy = (90 + 95) /
200 = 92%

Precision = 90 / 95 =
95%

Recall = 90 / 100 =
90%

F1 = 2 × (0.95 × 0.90)
/ (0.95 + 0.90) = 92%

Aspect-based sentiment analysis

Problem

Reviews often mention multiple aspects with different sentiments

Example

"The food was delicious but the service was terrible. The atmosphere was okay."

Food: Positive

Service: Negative

Atmosphere: Neutral

Applications:

Restaurant reviews: food, service,

ambiance, price

Product reviews: quality, price, shipping,

customer service

Hotel reviews: room, location, staff,

cleanliness

Key insight

More nuanced than overall sentiment! Provides actionable
insights.

Aspect-based sentiment: Worked example

1 review = """The pasta was

incredible - best I've had!

2 However, we waited 45 min which

was frustrating.

3 Ambiance was nice but loud.

Prices reasonable."""

4

5 aspects = {

6 "food": ["pasta",

"incredible"], # POSITIVE

7 "service": ["waited",

"frustrating"], # NEGATIVE

8 "ambiance": ["nice", "loud"],

MIXED

9 "price": ["reasonable"]

POSITIVE

10 }

Aspect Sentiment

Food POSITIVE

Service NEGATIVE

Ambiance MIXED

Price POSITIVE

Actionable

Focus on improving wait times!

Real-world application: Product review analysis

Business value

Identify product strengths and weaknesses

Track sentiment trends over time

Compare against competitors

Prioritize product improvements

Collect Reviews Extract Aspects Analyze Sentiment Generate Insights

Product review analysis pipeline

Example insights

Product A: Stable positive sentiment

Product B: Declining sentiment → investigate quality issues!

Hands-on exercise

Try this yourself

1. Collect data:

Scrape product reviews (Amazon, Yelp)

Or use public dataset (IMDb, Twitter)

2. Compare approaches:

Lexicon-based (VADER)

General pre-trained model (HuggingFace pipeline)

Domain-specific model (if available)

3. Analyze results:
Where do models disagree?

Which handles sarcasm better?

Which is most accurate for your domain?

4. Bonus: Fine-tune a model on your specific dataset!

Discussion: Understanding emotion

Philosophical questions

1. Can models "feel" sentiment?

They predict labels, but do they understand emotion?

2. Is sentiment objective or subjective?
Different annotators may disagree on sentiment

How do models handle ambiguity?

3. Cultural and linguistic variation:

Sentiment expressions vary across cultures

Can models capture these nuances?

4. Ethical considerations:

Automated sentiment analysis in hiring, lending...

Risks of bias and discrimination

Should we trust model judgments?

Week 2: Each step builds on the previous one

Data Cleaning Tokenization POS Tagging Sentiment Analysis

The NLP pipeline

Data cleaning: Remove

noise

Tokenization: Break into

units

POS tagging: Grammar

structure

Sentiment: Emotional

meaning

Assignment 2: SPAM email classifier

Your task

Build a classifier to detect spam emails

Apply this week's concepts:

Data cleaning: Remove HTML tags,

normalize text

Tokenization: Try different tokenizers

(word, subword)

Features: Extract useful signals (POS

patterns, sentiment?)

Classification: Train a model to identify

spam

Think about:

What makes spam different from

legitimate emails?

How does preprocessing affect accuracy?

Can you use sentiment as a feature?

What about POS patterns? (e.g., spam has

more imperatives?)

Link

Assignment 2: SPAM classifier

https://github.com/ContextLab/llm-course/tree/main/assignments/Assignment%202%3A%20SPAM%20classifier

Key takeaways

What we learned

1. POS tagging reveals grammatical structure — Neural nets learn syntax, but do they "understand"
it?

2. Sentiment analysis extracts emotional meaning — Lexicons → neural networks; domain fine-tuning
helps

3. Statistical learning powers modern NLP — Models learn patterns without explicit rules

4. Context is crucial — Words are ambiguous; Transformers excel at capturing context

5. Critical thinking matters — Question what "understanding" means; be aware of biases

Primary references

POS tagging and syntax:

Linzen, Dupoux, & Goldberg (2016).

Assessing the Ability of LSTMs to Learn

Syntax-Sensitive Dependencies. TACL.

Warstadt et al. (2020). BLiMP: The

Benchmark of Linguistic Minimal Pairs.

TACL.

Sentiment analysis:

Pang & Lee (2008). Opinion Mining and

Sentiment Analysis. Foundations and
Trends in IR.

Hutto & Gilbert (2014). VADER: A

HuggingFace resources:

Chapter 1.2: NLP Tasks with Pipeline

Chapter 3.2: Processing Data for Fine-
tuning

Chapter 7.2: Token Classification

https://huggingface.co/learn/nlp-course/chapter1/2
https://huggingface.co/learn/nlp-course/chapter3/2
https://huggingface.co/learn/nlp-course/chapter3/2
https://huggingface.co/learn/nlp-course/chapter7/2

Looking ahead: Weeks 3-4

Next topics

Dimensionality reduction (PCA, UMAP)

Bag-of-words and TF-IDF

Word embeddings (Word2Vec, GloVe)

Distributional semantics

Central question

"You shall know a word by the company it keeps"

How can we represent word meaning computationally?

Prepare by

Completing Assignment 2

Thinking about: What is "meaning"? How would you define it?

Exploring: Vector representations and semantic similarity

Additional resources

Tools and libraries:

spaCy: https://spacy.io/

HuggingFace Transformers:

https://huggingface.co/docs/transformers/

VADER Sentiment:

https://github.com/cjhutto/vaderSentiment

Datasets:

IMDb Movie Reviews:

https://ai.stanford.edu/~amaas

Amazon Product Reviews:

https://registry.opendata.aws/a

Stanford Sentiment Treebank:

https://nlp.stanford.edu/sentim

Interactive demos

https://spacy.io/
https://huggingface.co/docs/transformers/
https://github.com/cjhutto/vaderSentiment
https://ai.stanford.edu/~amaas/data/sentiment/
https://registry.opendata.aws/amazon-reviews/
https://nlp.stanford.edu/sentiment/

Questions? Want to chat more?

📧
Email me

💬
Join our Discord

💁
Come to office hours

Congratulations!

Week 2 complete! See you in Week 3!

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

