
Lecture 7: Text Classification

Workshop
PSYC 51.07: Models of language and communication

Jeremy R. Manning

Dartmouth College

Winter 2026



Learning Objectives

By the end of this session, you will

1. Build text classifiers from scratch using scikit-learn

2. Understand different text representation methods (BoW, TF-IDF, embeddings)

3. Compare Naive Bayes, Logistic Regression, and Neural approaches

4. Evaluate classifier performance using appropriate metrics

5. Debug common issues in text classification pipelines

Workshop format

Hands-on coding with the 20 Newsgroups dataset



Workshop Overview

Today's agenda

1. Part 1: Loading and exploring real data

2. Part 2: Feature engineering for text (BoW, TF-IDF)

3. Part 3: Building classifiers (Naive Bayes, Logistic Regression, Neural Networks)

4. Part 4: Model comparison and analysis

5. Part 5: Error analysis and improvements

6. Part 6: Real-world considerations (class imbalance)

Companion notebook

xhour_classification_demo.ipynb



Part 1: The 20 Newsgroups Dataset

A classic text classification benchmark

Posts from 20 different newsgroups

~20,000 documents total

Good for learning classification fundamentals

Today's subset (4 categories)

sci.space  — Science discussions about space

rec.sport.hockey  — Sports discussions about hockey

talk.politics.misc  — Political discussions

comp.graphics  — Computer graphics

Why these?

Relatively distinct topics for easier learning.



Loading the Data

1 from sklearn.datasets import fetch_20newsgroups

2

3 categories = [

4 'sci.space',

5 'rec.sport.hockey',

6 'talk.politics.misc',

7 'comp.graphics'

8 ]

9

10 train_data = fetch_20newsgroups(

11 subset='train',

12 categories=categories,

13 shuffle=True,

14 random_state=42,



Always explore your data before building models

Key questions to ask

1. How many documents per category?

2. What do the documents look like?

3. What words/phrases might be good indicators?

4. Are there categories that might be hard to distinguish?



Exploring the Data: Concrete Example

1 import pandas as pd

2 from collections import Counter

3

4 # Check class distribution

5 print("Documents per category:")

6 for i, name in enumerate(train_data.target_names):

7 count = (train_data.target == i).sum()

8 print(f"  {name}: {count}")

9 # sci.space: 593, rec.sport.hockey: 600, talk.politics.misc: 465,

comp.graphics: 584

10

11 # Look at a sample document

12 idx = [i for i, t in enumerate(train_data.target) if t == 0][0]

13 print(train_data.data[idx][:500])

Notice

Classes are roughly balanced (good!), but talk.politics.misc  has fewer examples.



Convert text to numbers for machine learning

Three approaches today

1. Bag of Words (BoW): Count word frequencies

2. TF-IDF: Weight by document frequency

3. Dense embeddings: (Preview for future lectures)



Bag of Words: count how many times each word

appears

1 from sklearn.feature_extraction.text import CountVectorizer

2

3 bow_vectorizer = CountVectorizer(

4 max_features=5000, # Keep only top 5000 words

5 min_df=2, # Word must appear in at least 2 docs

6 max_df=0.8, # Word must appear in <80% of docs

7 stop_words='english' # Remove common words

8 )

9

10 X_train_bow = bow_vectorizer.fit_transform(train_data.data)

Result: Sparse matrix of word counts



Bag of Words: Limitations

What BoW captures

Word presence/frequency

Vocabulary overlap between documents

What BoW ignores

Word order ("not good" vs "good not")

Semantics ("great" vs "excellent")

Context

Key insight

Common words dominate but are often uninformative!



BoW vectors are sparse: mostly zeros

Example

1 from sklearn.feature_extraction.text import CountVectorizer

2

3 docs = ["NASA launches rocket to Mars", "Hockey game ends in

overtime",

4 "NASA discovers water on Mars"]

5

6 vectorizer = CountVectorizer()

7 X = vectorizer.fit_transform(docs)

8

9 print("Vocabulary:", vectorizer.vocabulary_)

10 # {'nasa': 5, 'launches': 4, 'rocket': 7, 'to': 8, 'mars': 6, ...}

11

12 print("\nDocument 1:", X[0].toarray())

13 # [0 0 0 0 1 1 1 1 1 0 0 0 0] <- counts for each word

Observation

Most entries are 0 (sparse!). Documents share "mars" and "nasa".



Method 2: TF-IDF

Term Frequency-Inverse Document Frequency

where:

 = frequency of term  in document 

 = inverse document frequency

TF-IDF(t, d) = TF(t, d) × IDF(t)

TF(t, d) t d

IDF(t) = log ​df(t)
N

Intuition

Downweight common words, upweight rare informative words!



TF-IDF in Practice

1 from sklearn.feature_extraction.text import TfidfVectorizer

2

3 tfidf_vectorizer = TfidfVectorizer(

4 max_features=5000,

5 min_df=2,

6 max_df=0.8,

7 stop_words='english',

8 use_idf=True,

9 sublinear_tf=True # Use log scaling for term frequency

10 )

11

12 X_train_tfidf = tfidf_vectorizer.fit_transform(train_data.data)

Result: Sparse matrix of TF-IDF scores



BoW vs TF-IDF Comparison

Same document, different representations

Word BoW Count TF-IDF Score

"the" 15 0.02 (low — common everywhere)

"nasa" 3 0.45 (high — rare, informative)

"space" 5 0.38 (moderate — distinctive)

Key insight

TF-IDF identifies the truly distinctive terms!



Three classifier approaches to compare

Today's candidates

1. Naive Bayes: Fast, probabilistic, good baseline

2. Logistic Regression: Linear, interpretable, often best

3. Neural Network: Flexible, can learn complex patterns



Classifier 1: Naive Bayes

Bayes' theorem with independence assumption

P (y∣x) ∝ P (y) ​ P (x ​∣y)
i=1

∏
n

i

Why "naive"? Assumes features are independent

(they're not!)

Why does it work? Despite the wrong assumption,

it often performs well for text.

1 from sklearn.naive_bayes import MultinomialNB

2

3 nb = MultinomialNB()

b fi ( i fidf i d )



Classifier 2: Logistic Regression

Learns weights for each feature

P (y = k∣x) = ​

​ e∑j
w ​xj

T

ew ​xk
T

Advantages

Interpretable weights (which words matter?)

Often outperforms Naive Bayes

Fast training and prediction

1 from sklearn.linear_model import LogisticRegression

2

3 lr = LogisticRegression(max_iter=1000, C=1.0)

4 lr.fit(X_train_tfidf, train_data.target)



Logistic regression weights reveal which words matter

Top positive features per category

Category Top Positive Features

sci.space nasa, orbit, shuttle, moon, launch

rec.sport.hockey hockey, nhl, team, game, play

talk.politics.misc government, president, tax, policy

comp.graphics image, graphics, 3d, rendering

Key insight

The model learns what we'd expect! Interpretability matters.



Classifier 3: Simple Neural Network

Input (TF-IDF) Hidden Layer 1 (256) Hidden Layer 2 (128) Output (4 classes)

Feedforward architecture

1 import torch.nn as nn

2

3 class TextClassifier(nn.Module):

4 def __init__(self, input_dim, hidden_dim, output_dim):

5 super().__init__()

6 self.fc1 = nn.Linear(input_dim, hidden_dim)

7 self.fc2 = nn.Linear(hidden_dim, hidden_dim // 2)

8 self.fc3 = nn.Linear(hidden_dim // 2, output_dim)

9 self.dropout = nn.Dropout(0.3)

10 self.relu = nn.ReLU()



Linear models are competitive with BoW features

Results on 20 Newsgroups

Model Accuracy

Naive Bayes (BoW) ~85%

Naive Bayes (TF-IDF) ~87%

Logistic Regression ~90%

Neural Network ~89%

Key insight

Neural networks shine with richer representations (embeddings), not BoW.



Accuracy alone is not enough

Better metrics

Precision: Of predicted positives, how many are truly positive?

Recall: Of actual positives, how many did we catch?

F1-Score: Harmonic mean: F 1 = 2 × ​P recision+Recall
P recision×Recall

Use precision/recall/F1 when...

Datasets are imbalanced or different errors have different costs.



Confusion Matrix

Visual representation of classifier errors

Predicted A Predicted B Predicted C Predicted D

Actual A 85 2 3 0

Actual B 1 92 2 5

Actual C 4 3 88 5

Actual D 0 8 2 90

Interpretation

Diagonal = correct predictions. Off-diagonal = errors.



Error analysis: critical but often skipped

The process

1. Find misclassified examples

2. Look for patterns

3. Understand why the model failed

4. Use insights to improve

Common culprits

Mixed topics, short documents, unusual vocabulary



Error Analysis: Concrete Example

1 # Find misclassified examples

2 y_pred = lr.predict(X_test_tfidf)

3 errors = np.where(y_pred != test_data.

4 idx = errors[0]

5

6 print(f"True: 

{test_data.target_names[test_data.targ

7 print(f"Pred: 

{test_data.target_names[y_pred[idx]]}"

8 print(test_data.data[idx][:300])

Example output

True: sci.space Predicted: comp.graphics

"I'm working on a 3D visualization of the solar system for my
graphics project..."

Insight

Document mentions both graphics AND space. Model

reasonably confused!



Common Error Patterns

Why do classifiers fail?

1. Ambiguous content: Document mentions multiple topics

2. Limited context: Very short documents

3. Domain shift: Test data differs from training

4. Rare vocabulary: Important words not in training

Solution ideas

Better preprocessing

More features (bigrams, trigrams)

Domain-specific fine-tuning



Class imbalance makes models predict the

majority class

Solutions

1. Class weights: Penalize minority errors more

2. Oversampling: Duplicate minority examples

3. Undersampling: Remove majority examples

4. SMOTE: Generate synthetic minority examples

1 lr_balanced = LogisticRegression(

2 class_weight='balanced' # Automatically adjust weights

3 )



Discussion Questions

Think about these

1. BoW vs TF-IDF: When would you prefer one over the other?

2. Linear vs Neural: Why didn't the neural network significantly
outperform logistic regression?

3. Feature Engineering: How important was feature engineering
compared to model choice?

4. Scalability: Which approach scales best to millions of documents?

5. Interpretability: Which models are most interpretable? Why does it
matter?



Key Takeaways

Remember

1. Good features matter more than complex models (for many tasks)

2. TF-IDF usually beats raw BoW for text classification

3. Linear models are competitive with neural networks on bag-of-words

4. Always examine errors to understand model behavior

5. Consider class imbalance and adjust accordingly



Connection to Course Themes

This week's pipeline

Data Cleaning (Lecture 5) Tokenization (Lecture 6) Feature Extraction (Today) Classification (Today)

Next lecture

POS Tagging & Sentiment Analysis — How do these building blocks combine for
real NLP applications?



Hands-On Exercise

Open the companion notebook

xhour_classification_demo.ipynb

Steps

1. Load the 20 Newsgroups dataset

2. Experiment with different vectorizers

3. Train multiple classifiers

4. Analyze errors and improve

5. Try your own text examples!

Goal

Build intuition for text classification



Additional Resources

Libraries

scikit-learn

PyTorch

HuggingFace

Chapter 1: Transformer Models

Datasets

20 Newsgroups: Classic benchmark

IMDb Reviews: Sentiment classification

AG News: News categorization

https://scikit-learn.org/
https://pytorch.org/
https://huggingface.co/learn/nlp-course/chapter1


Questions? Want to chat more?

📧
Email me

💬
Join our Discord

💁
Come to office hours

Next up

Lecture 8 — POS Tagging & Sentiment Analysis

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

