tio
u ic
R. M
Dartmouth Co
Winter 2026

Learning objectives

By the end of this lecture, you will be able to...
1. Understand what tokenization is and why it matters
2. Explain the limitations of word-level tokenization
3. Describe how subword tokenization works (BPE, WordPiece, SentencePiece)
4. Compare different tokenization methods and their trade-offs
5. Implement and experiment with different tokenizers using HuggingFace

Central question

How do we break text into meaningful units for Al models?

What is tokenization?

Definition

Tokenization is the process of converting text into smaller units (tokens).

Why tokenize? What can tokens be?
 Neural networks process « Characters: a, b, c, ... (very
numbers, not text fine-grained)
« Need discrete units to « Words: "hello", "world"
create vocabulary (intuitive but limited)
« First step in any NLP « Subwords: "un”,

pipeline "happiness" (sweet spot!)

The tokenization spectrum

[Character J — [Subword } — Word

Fine-grained to coarse-grained tokenization

Granularity Vocabulary size aeguence
length
Character ~100s Very long
Subword 30k-50k Medium

Splitting on spaces fails for three reasons

1. Vocabulary explosion

English has ~170,000 words, each inflection counts separately ("run", "runs", "running”,

1] e

compounds vary ("ice cream", "icecream"”, "ice-cream")

ran"), and

2. Unknown words

OQV for new terms ("COVID-19", "selfie"), rare words ("supercalifragilisticexpialidocious"), and typos
(Iltehll)

3. Languages without spaces

Chinese: BZHE | Japanese: BZASEED Ak

Word-level limitations illustrated

{ Word-level } —= { Subword-level] o [Character-level

J

Vocabulary growth as training data increases

Observation

Word-level vocabulary keeps growing! Subword vocabulary stabilizes at a
reasonable size.

The OQV problem in action

Simple word-level vocabulary
vocab = {"hello", "world", "the", "cat", "sat"}

def tokenize word level(text, vocab):
tokens = text.lower().split()
result []
for token in tokens:
if token in vocab:
result.append(token)
else:
result.append("<UNK>") # Unknown token
return result

Example
text = "Hello! The cat jumped"

Problem

We lose information! "jumped" becomes meaningless <UNK>

Most words are made of smaller meaningful

pleces
Examples: Benefits:
"unhappiness” = "un" + » Fixed vocabulary (30k-50k
"happiness” tokens)
"preprocessing” = "pre" + « No OOV: break into known
‘process” + "Ing’ parts
"antiestablishment” = Captures morphology

"anti" + "establish" + (pretixes, suffixes)

L B B |

Subword tokenization solves the OOV problem

Word-level vocabulary (only words seen in training)
vocab = {"the", "cat", "

sat", "on", "mat", "dog", "ran"

Trying to tokenize a new sentence:
The subword solution:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("gpt2")

Same difficult sentence:
tokens = tokenizer.tokenize("supercalifragilisticexpialidocious")
print(tokens)

Key insight

Subwords preserve meaning even for novel words!

Visual: How "unhappiness" gets tokenized

[unhappiness] —> [Word-level]
{ unhappiness }% [un }% [happi }% [ness J

Word-level (1 token, may be OOV) vs. Subword BPE (3 tokens, always known)

Trade-off

More tokens = longer sequences, but smaller vocabulary and no OOV!

Byte-Pair Encoding (BPE)

Sennrich, Haddow, & Birch (2016, ACL): Neural Machine Translation of Rare Words with Subword Units

I Further reading

e Original use: Data compression (1994)
« Adapted for NLP: Sennrich et al. (2016)
« Used by: GPT, GPT-2, GPT-3, RoBERTa, BART, many others!

Core idea
lteratively merge the most frequent pair of characters/subwords.

Algorithm
1. Start with character-level vocabulary
2. Count all adjacent pairs in corpus
3. Merge most frequent pair = create new token
4. Repeat until desired vocabulary size

https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/

BPE example: Step by step

Training data: "low low low lower lower newest newest newest newest widest"

Initial tokens (characters): 1, o, w, e, r, n, s, t, 1, d

Iteration 1
Most frequent pair = e, s (appears 4 times)
« Merge = new token: es

. Vocabulary: 1, o, w, e, r, n, s, t, i, d, es

Iteration 2
Most frequent = es, t
« Merge = new token: est

. Vocabulary: 1, o, w, e, r, n, s, t, i, d, es, est

Iteration 3
Most frequent = 1, o

- Merge = new token: 1o

Continue until reaching target vocabulary size (e.qg.. 30.000)...

BPE learns to merge frequent character pairs

Training corpus: "low" (x3), "lower" (x2), "newest" (x4), "widest" (x1)

After training, vocabulary includes:
- Characters: 1, o, w, e, r, n, s, t, 1, d
- Merges learned: es > est > 1o » low > er >

Tokenizing "lowest":

Step 1: Split into characters > [1, o, w, e, s, t]
Step 2: Apply merge rules in order learned:

[l, o, w, e, s, t]

> [lo, w, e, s, t] (merge 1+0)

> [low, e, s, t] (merge lo+w)

> [low, es, t] (merge e+s)

Result: "lowest" — ["low", "est"] (2 tokens instead of 6 characters!)

BPE visualization

) - -) - (S —

Step O: Character-level

— — est

After merges: "lowest" becomes 3 tokens

Result

"lowest" = [lo, w, est] — captures common patterns without explicit

BPE in practice with HuggingFace

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("gpt2") # GPT-2 uses BPE

text = "I'm learning about tokenization!"

tokens = tokenizer.tokenize(text)

print("Tokens:", tokens)

['T', "'m", 'Glearning', 'Gabout', 'Gtoken', 'ization', '!']
Note: 'G' represents space

token_ids = tokenizer.encode(text) # Get token IDs
print("Token IDs:", token ids) # [4@, 1101, 4673, 546, 11241, 1634, 0]

Try it out!

Use the Tokenization Explorer Demo to experiment with different tokenizers
interactively.

https://contextlab.github.io/llm-course/demos/tokenization/

WordPiece merges "surprisingly common" pairs

Further reading

Wu et al. (2016, arXiv): Google's Neural Machine Translation System

Key difference from BPE

Instead of merging most frequent pair, merge pair that maximizes likelihood:

P(xy)

score(x, y) = PO % PO

« Used by: BERT, DistilBERT, Electra

« Special tokens: ## prefix for continuation ("playing" —
["play", "ting"])

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

WordPiece example with BERT

from transformers import AutoTokenizer

BERT uses WordPiece
tokenizer = AutoTokenizer.from pretrained("bert-base-uncased")

text = "I'm learning about tokenization!"

tokens = tokenizer.tokenize(text)
print("Tokens:", tokens)

I

Output: ['1', "'", 'm', 'learning', 'about', 'token', '##ization',
I! I]
""" Note the

Note
BERT lowercases by default (unless using cased model)

SentencePiece works for languages without
spaces

Further reading

Kudo & Richardson (2018, EMNLP): SentencePiece: A simple and language
independent subword tokenizer

Problem with SentencePiece solution:
BPE/WordPiece:
« Raw character stream input
 Fail on Chinese, Japanese,)

Thai...

https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/

SentencePiece in action

from transformers import AutoTokenizer

T5 uses SentencePiece
tokenizer = AutoTokenizer.from_pretrained("t5-small")

text = "I'm learning about tokenization!"

tokens = tokenizer.tokenize(text)

print("Tokens:", tokens)
Output: ['T', "'", 'm', 'learning', 'about', 'token', 'ization', '!']
""" Note the for spaces

H MAanvl-ec ca-mlaancecTlvs: wwma+h A+hAan T ancsitacsac |

Key advantage

No language-specific preprocessing required!

Tokenization methods comparison

Key
Method A h Used B
etho pproac sed By Nl
Frequency GPT-2,
BPE B -
merging RoBERTa il s
WordPiece leellhéod .BI.ERT, Prmmpled
merging Distil BERT scoring
SentencePie Too-down
ce P TS5, mT5 Multilingual

pruning

Comparing tokenizers side-by-side

from transformers import AutoTokenizer
text = "The unhappiest researchers couldn't preprocess data!"

models = {"GPT-2 (BPE)": "gpt2", "BERT (WordPiece)": "bert-base-
uncased",
"T5 (SentencePiece)": "t5-small"}

for name, model _name in models.items():
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokens = tokenizer.tokenize(text)
print(f"{name}: Tokens ({len(tokens)}): {tokens}")

Observe: Different handling of "unhappiest", spaces, and token counts!

Tokenizer comparison: Actual output

Input: "The unhappiest researchers couldn't preprocess data!"

Tokenizer

Tokens

Count

GPT-2 (BPE)

['The', 'Gun', 'happ', 'iest',
'Gresearchers', 'Gcouldn',
"'t", 'Gpre', 'process',
"Gdataf, "!"]

11

BERT (WordPiece)

['the', 'un', 'itthap',6 '#tpie',
"##Hst', 'researchers’',
Icou'Ldnl’ Ill"’ Itl’ lprel'
"#Htprocess', 'data', '!']

13

T5 (SentencePiece)

['The', 'un', 'happiest',

'researchers', 'couldn', ,

't', 'pre', 'process', 'data',

I!I]

11

Key observations

. G (GPT-2) and

(T5) mark word starts (spaces)

« ## (BERT) marks continuation subwords

. "unhappiest” is split differently by each

pDEDT |- — DT HD/TLC

P P, ™

Tokenizers add special tokens for model-specitic
purposes

Token Purpose Used By

CLS] Classification RERT

token (start)

Separator
[SEP] between BERT
segments

Padding to same

[PAD] Most models

Working with special tokens

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

text = "Hello world"

encoded = tokenizer(text, return_tensors="pt")

print("Input IDs:", encoded['input_ids']) # [101, 7592, 2088, 102]
""" [CLS] and [SEP] added automatically!

full_decode = tokenizer.decode(encoded['input_ids'][0])
print("with special:", full_decode) # "[CLS] hello world [SEP]"

clean_decode = tokenizer.decode(encoded['input_ids'][0], skip_special_tokens=True)

print("Without special:", clean_decode) # "hello world"

Vocabulary size trade-offs

Smaller vocabulary (e.g., 10k Larger vocabulary (e.g.,
tokens): 100k tokens):
o Faster training (smaller « Shorter sequences (closer to
embedding matrix) word-level)
e Less memory « Better semantic

» Longer sequences (more preservation

subwords per word) « Slower training (larger

« May lose semantic embeddings)

s gl R A N e e

Tokenization pitfalls and gotchas

Common issues to watch out for

1. Tokenizer-model mismatch: Always use the tokenizer that matches your model! GPT-2 tokenizer #
BERT tokenizer

2. Maximum sequence length: BERT: 512 tokens | GPT-2: 1024 | GPT-3: 2048 — Text gets truncated if
too long!

3. Case sensitivity: bert-base-uncased lowercases everything; bert-base-cased preserves case

4. Rare words = many tokens: "antidisestablishmentarianism" — 10+ tokens — Can hit sequence limit
faster than expected!

5. Special characters: Emoji, Unicode, accents may be split unexpectedly

Debugging tokenization

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("gpt2")
text = "The antidisestablishmentarianism debate continues!"

tokens = tokenizer.tokenize(text)
token_ids = tokenizer.encode(text)
print(f"Tokens ({len(tokens)}): {tokens}\n")

for i, (token, token_id) in enumerate(zip(tokens, token_ids)):
decoded = tokenizer.decode([token_id])
print(f"{i:2d}. ID {token_id:5d} | Token: {token:20s} | Decoded:
{decoded}")

print(f"\nVocabulary size: {tokenizer.vocab_size}")

Connection to human language learning

Further reading

Saffran, Aslin, & Newport (1996, Science): Statistical learning by 8-month-old
infants

Infant learning: Parallel with subword
tokenization:
« Babies track statistical

regularities in speech » BPE: Merge frequent

+ Identify word boundaries character pairs —> discover
from transitional common morphemes
probabilities » Infants: Track frequent

o
P~ W II IAIA IAAIMI\A ’\Ilt\’\l\l'l\l’

https://www.science.org/doi/10.1126/science.274.5294.1926
https://www.science.org/doi/10.1126/science.274.5294.1926
https://www.science.org/doi/10.1126/science.274.5294.1926

Statistical learning in action

Infant Learning: BPE Learning:
Input stream: Input corpus:
bidakupadotigolabu ... low low lower ...
Learn high-probability Merge high-frequency pairs:
sequences:

« l+0 — lo

« bi-da-ku (word) . Tod = Tow

e pa-do-ti1i (word)
Build vocabulary:

Hands-on exercise

Experiment with different tokenizers!

1. Choose 3 models: GPT-2, BERT, T5

2. Test on diverse texts:

o Standard English: "The cat sat on the mat"

o Complex words: "antidisestablishmentarianism”
o Contractions: "I'm, you're, won't"

o Typos: "teh giuck brown fox"

o Emoji: "I love this!"

o Other languages: "IX@HX" (Chinese)

3. Compare results: Number of tokens, how words are split, handling of unknown/rare words
4. Reflect: Which tokenizer works best for your use case? What are the trade-offs?

Try it out!

Use the Tokenization Explorer Demo to compare tokenizers interactively!

https://contextlab.github.io/llm-course/demos/tokenization/

Discussion questions

Think about it...
1. Linguistics vs. Statistics: BPE discovers morphemes (un-, -ing, -ness) without
linguistic rules. Is this "learning" morphology, or just pattern matching?

2. Cross-lingual tokenization: Should we use the same tokenizer for all languages?
What are the trade-offs?

3. Semantic preservation: Does breaking "unhappy" into ["un", "happy"] preserve
meaning? What about "butterfly"?

4. Human vs. machine: Humans don't consciously tokenize words. Why do machines
need to?

5. Future directions: Will we move toward character-level or byte-level models that
don't need tokenization?

Primary references

Foundational papers

« Sennrich, Haddow, & Birch (2016). Neural Machine Translation of Rare Words
with Subword Units. ACL. — Introduced BPE for NLP

« Kudo & Richardson (2018). SentencePiece: A simple and language
independent approach. EMNLP. — Language-agnostic tokenization

« Wu et al. (2016). Google's Neural Machine Translation System. arXiv. —
WordPiece algorithm

HuggingFace resources
o Chapter 2.4: Tokenizers
o Chapter 6: Tokenizers (detailed)

https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/
https://arxiv.org/abs/1609.08144
https://huggingface.co/learn/nlp-course/chapter2/4
https://huggingface.co/learn/nlp-course/chapter6

Key takeaways

Summary

1.
2.

Tokenization is fundamental: Bridges raw text and neural networks

Word-level has major limitations: OOV problem, vocabulary explosion,
language-dependent

. Subword tokenization is the sweet spot: Balanced vocabulary size and

sequence length

. Different methods, similar principles: BPE: frequency-based | WordPiece:

likelihood | SentencePiece: language-agnostic

. Statistical learning connects humans and machines: Both discover structure

from distributional patterns

. Always match tokenizer to model! Critical for correct predictions

Looking ahead

Next lecture: X-Hour Text Classification Workshop
How tokenization connects:
« POS tagging: Token-level classification
« Sentiment: Sequence-level classification

 Both depend on good tokenization!

Prepare by...
« Experimenting with HuggingFace tokenizers
« Thinking about: How does token granularity affect downstream tasks?
o Exploring: Tokenizer artifacts and their impact

Questions? Want to chat more?

Email me Join our Discord Come to office hours

Next up
Lecture 7 — X-Hour: Text Classification Workshop

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

