
Lecture 6: Tokenization
PSYC 51.07: Models of language and communication

Jeremy R. Manning

Dartmouth College

Winter 2026

Learning objectives

By the end of this lecture, you will be able to...

1. Understand what tokenization is and why it matters

2. Explain the limitations of word-level tokenization

3. Describe how subword tokenization works (BPE, WordPiece, SentencePiece)

4. Compare different tokenization methods and their trade-offs

5. Implement and experiment with different tokenizers using HuggingFace

Central question

How do we break text into meaningful units for AI models?

What is tokenization?

Definition

Tokenization is the process of converting text into smaller units (tokens).

Why tokenize?

Neural networks process

numbers, not text

Need discrete units to

create vocabulary

First step in any NLP

pipeline

What can tokens be?

Characters: a, b, c, ... (very

fine-grained)

Words: "hello", "world"

(intuitive but limited)

Subwords: "un",

"happiness" (sweet spot!)

The tokenization spectrum

Character Subword Word

Fine-grained to coarse-grained tokenization

Granularity Vocabulary size
Sequence

length

Character ~100s Very long

Subword 30k-50k Medium

Splitting on spaces fails for three reasons

1. Vocabulary explosion

English has ~170,000 words, each inflection counts separately ("run", "runs", "running", "ran"), and
compounds vary ("ice cream", "icecream", "ice-cream")

2. Unknown words

OOV for new terms ("COVID-19", "selfie"), rare words ("supercalifragilisticexpialidocious"), and typos
("teh")

3. Languages without spaces

Chinese: 没有空格 | Japanese: 日本語も同様

Word-level limitations illustrated

Word-level Subword-level Character-level

Vocabulary growth as training data increases

Observation

Word-level vocabulary keeps growing! Subword vocabulary stabilizes at a
reasonable size.

The OOV problem in action

1 # Simple word-level vocabulary

2 vocab = {"hello", "world", "the", "cat", "sat"}

3

4 def tokenize_word_level(text, vocab):

5 tokens = text.lower().split()

6 result = []

7 for token in tokens:

8 if token in vocab:

9 result.append(token)

10 else:

11 result.append("<UNK>") # Unknown token

12 return result

13

14 # Example

15 text = "Hello! The cat jumped"

Problem

We lose information! "jumped" becomes meaningless <UNK>

Most words are made of smaller meaningful

pieces

Examples:

"unhappiness" = "un" +

"happiness"

"preprocessing" = "pre" +

"process" + "ing"

"antiestablishment" =

"anti" + "establish" +

"ment"

Benefits:

Fixed vocabulary (30k-50k

tokens)

No OOV: break into known

parts

Captures morphology

(prefixes, suffixes)

Subword tokenization solves the OOV problem

1 # Word-level vocabulary (only words seen in training)

2 vocab = {"the", "cat", "sat", "on", "mat", "dog", "ran"}

3

4 # Trying to tokenize a new sentence:

The subword solution:

1 from transformers import AutoTokenizer

2 tokenizer = AutoTokenizer.from_pretrained("gpt2")

3

4 # Same difficult sentence:

5 tokens = tokenizer.tokenize("supercalifragilisticexpialidocious")

6 print(tokens)

Key insight

Subwords preserve meaning even for novel words!

Visual: How "unhappiness" gets tokenized

unhappiness Word-level

unhappiness un happi ness

Word-level (1 token, may be OOV) vs. Subword BPE (3 tokens, always known)

Trade-off

More tokens = longer sequences, but smaller vocabulary and no OOV!

Byte-Pair Encoding (BPE)

Further reading

Sennrich, Haddow, & Birch (2016, ACL): Neural Machine Translation of Rare Words with Subword Units

Original use: Data compression (1994)

Adapted for NLP: Sennrich et al. (2016)

Used by: GPT, GPT-2, GPT-3, RoBERTa, BART, many others!

Core idea

Iteratively merge the most frequent pair of characters/subwords.

Algorithm

1. Start with character-level vocabulary

2. Count all adjacent pairs in corpus

3. Merge most frequent pair → create new token

4. Repeat until desired vocabulary size

https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/

BPE example: Step by step

Training data: "low low low lower lower newest newest newest newest widest"

Initial tokens (characters): l, o, w, e, r, n, s, t, i, d

Iteration 1

Most frequent pair = e, s (appears 4 times)

Merge → new token: es

Vocabulary: l, o, w, e, r, n, s, t, i, d, es

Iteration 2

Most frequent = es, t

Merge → new token: est

Vocabulary: l, o, w, e, r, n, s, t, i, d, es, est

Iteration 3

Most frequent = l, o

Merge → new token: lo

Continue until reaching target vocabulary size (e.g., 30,000)...

BPE learns to merge frequent character pairs

1 Training corpus: "low" (x3), "lower" (x2), "newest" (x4), "widest" (x1)

2

3 After training, vocabulary includes:

4 - Characters: l, o, w, e, r, n, s, t, i, d

5 - Merges learned: es → est → lo → low → er → ...
6

7 Tokenizing "lowest":

8 Step 1: Split into characters → [l, o, w, e, s, t]
9 Step 2: Apply merge rules in order learned:

10 [l, o, w, e, s, t]

11 → [lo, w, e, s, t] (merge l+o)
12 → [low, e, s, t] (merge lo+w)
13 → [low, es, t] (merge e+s)

[l] ()
Result: "lowest" → ["low", "est"] (2 tokens instead of 6 characters!)

BPE visualization

l o w e s t

Step 0: Character-level

lo w est

After merges: "lowest" becomes 3 tokens

Result

"lowest" → [lo, w, est] — captures common patterns without explicit

BPE in practice with HuggingFace

1 from transformers import AutoTokenizer

2 tokenizer = AutoTokenizer.from_pretrained("gpt2") # GPT-2 uses BPE

3

4 text = "I'm learning about tokenization!"
5 tokens = tokenizer.tokenize(text)

6 print("Tokens:", tokens)

7 # ['I', "'m", 'Ġlearning', 'Ġabout', 'Ġtoken', 'ization', '!']

8 # Note: 'Ġ' represents space

9

10 token_ids = tokenizer.encode(text) # Get token IDs

11 print("Token IDs:", token_ids) # [40, 1101, 4673, 546, 11241, 1634, 0]

12

Try it out!

Use the Tokenization Explorer Demo to experiment with different tokenizers
interactively.

https://contextlab.github.io/llm-course/demos/tokenization/

WordPiece merges "surprisingly common" pairs

Further reading

Wu et al. (2016, arXiv): Google's Neural Machine Translation System

Key difference from BPE

Instead of merging most frequent pair, merge pair that maximizes likelihood:

score(x, y) = ​

P (x) × P (y)
P (xy)

Used by: BERT, DistilBERT, Electra

Special tokens: ## prefix for continuation ("playing" →

["play", "##ing"])

https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

WordPiece example with BERT

1 from transformers import AutoTokenizer

2

3 # BERT uses WordPiece

4 tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

5

6 text = "I'm learning about tokenization!"
7

8 tokens = tokenizer.tokenize(text)

9 print("Tokens:", tokens)

10 # Output: ['i', "'", 'm', 'learning', 'about', 'token', '##ization',
'!']

11 # ^^^ Note the ##

12

Note

BERT lowercases by default (unless using cased model)

SentencePiece works for languages without

spaces

Further reading

Kudo & Richardson (2018, EMNLP): SentencePiece: A simple and language
independent subword tokenizer

Problem with

BPE/WordPiece:

Assume pre-tokenized text

Fail on Chinese, Japanese,

Thai...

SentencePiece solution:

Raw character stream input

Space = just another char (

▁)

https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/

SentencePiece in action

1 from transformers import AutoTokenizer

2

3 # T5 uses SentencePiece

4 tokenizer = AutoTokenizer.from_pretrained("t5-small")

5

6 text = "I'm learning about tokenization!"
7

8 tokens = tokenizer.tokenize(text)

9 print("Tokens:", tokens)

10 # Output: ['I', "'", 'm', 'learning', 'about', 'token', 'ization', '!']

11 # ^^^ Note the for spaces

12

13 # Works seamlessly with other languages!
Key advantage

No language-specific preprocessing required!

Tokenization methods comparison

Method Approach Used By
Key

Feature

BPE
Frequency

merging

GPT-2,

RoBERTa
Bottom-up

WordPiece
Likelihood

merging

BERT,

DistilBERT

Principled

scoring

SentencePie

ce

(Unigram)

Top-down

pruning
T5, mT5 Multilingual

Comparing tokenizers side-by-side

1 from transformers import AutoTokenizer

2 text = "The unhappiest researchers couldn't preprocess data!"
3

4 models = {"GPT-2 (BPE)": "gpt2", "BERT (WordPiece)": "bert-base-
uncased",

5 "T5 (SentencePiece)": "t5-small"}

6

7 for name, model_name in models.items():

8 tokenizer = AutoTokenizer.from_pretrained(model_name)

9 tokens = tokenizer.tokenize(text)

10 print(f"{name}: Tokens ({len(tokens)}): {tokens}")
11

12 # Observe: Different handling of "unhappiest", spaces, and token counts!

Tokenizer comparison: Actual output

Input: "The unhappiest researchers couldn't preprocess data!"

Tokenizer Tokens Count

GPT-2 (BPE)

['The', 'Ġun', 'happ', 'iest',

'Ġresearchers', 'Ġcouldn',

"'t", 'Ġpre', 'process',

'Ġdata', '!']

11

BERT (WordPiece)

['the', 'un', '##hap', '##pie',

'##st', 'researchers',

'couldn', "'", 't', 'pre',

'##process', 'data', '!']

13

T5 (SentencePiece)

['The', 'un', 'happiest',

'researchers', 'couldn', "'",

't', 'pre', 'process', 'data',

'!']

11

Key observations

Ġ (GPT-2) and ▁ (T5) mark word starts (spaces)

(BERT) marks continuation subwords

"unhappiest" is split differently by each

BERT lowercases; GPT 2/T5 preserve case

Tokenizers add special tokens for model-specific

purposes

Token Purpose Used By

[CLS]
Classification

token (start)
BERT

[SEP]

Separator

between

segments

BERT

[PAD]
Padding to same

l h
Most models

Working with special tokens

1 from transformers import AutoTokenizer

2 tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

3

4 text = "Hello world"

5 encoded = tokenizer(text, return_tensors="pt")

6 print("Input IDs:", encoded['input_ids']) # [101, 7592, 2088, 102]

7 # ^^^ [CLS] and [SEP] added automatically!

8

9 full_decode = tokenizer.decode(encoded['input_ids'][0])

10 print("With special:", full_decode) # "[CLS] hello world [SEP]"

11

12 clean_decode = tokenizer.decode(encoded['input_ids'][0], skip_special_tokens=True)

13 print("Without special:", clean_decode) # "hello world"

Vocabulary size trade-offs

Smaller vocabulary (e.g., 10k

tokens):

Faster training (smaller

embedding matrix)

Less memory

Longer sequences (more

subwords per word)

May lose semantic

information

Larger vocabulary (e.g.,

100k tokens):

Shorter sequences (closer to

word-level)

Better semantic

preservation

Slower training (larger

embeddings)

More memory required

Tokenization pitfalls and gotchas

Common issues to watch out for

1. Tokenizer-model mismatch: Always use the tokenizer that matches your model! GPT-2 tokenizer ≠
BERT tokenizer

2. Maximum sequence length: BERT: 512 tokens | GPT-2: 1024 | GPT-3: 2048 — Text gets truncated if
too long!

3. Case sensitivity: bert-base-uncased lowercases everything; bert-base-cased preserves case

4. Rare words → many tokens: "antidisestablishmentarianism" → 10+ tokens — Can hit sequence limit
faster than expected!

5. Special characters: Emoji, Unicode, accents may be split unexpectedly

Debugging tokenization

1 from transformers import AutoTokenizer

2 tokenizer = AutoTokenizer.from_pretrained("gpt2")

3 text = "The antidisestablishmentarianism debate continues!"
4

5 tokens = tokenizer.tokenize(text)

6 token_ids = tokenizer.encode(text)

7 print(f"Tokens ({len(tokens)}): {tokens}\n")
8

9 for i, (token, token_id) in enumerate(zip(tokens, token_ids)):

10 decoded = tokenizer.decode([token_id])

11 print(f"{i:2d}. ID {token_id:5d} | Token: {token:20s} | Decoded:
{decoded}")

12

13 print(f"\nVocabulary size: {tokenizer.vocab_size}")

Connection to human language learning

Further reading

Saffran, Aslin, & Newport (1996, Science): Statistical learning by 8-month-old
infants

Infant learning:

Babies track statistical

regularities in speech

Identify word boundaries

from transitional

probabilities

N li i l j

Parallel with subword

tokenization:

BPE: Merge frequent

character pairs → discover

common morphemes

Infants: Track frequent

syllable pairs→ discover

https://www.science.org/doi/10.1126/science.274.5294.1926
https://www.science.org/doi/10.1126/science.274.5294.1926
https://www.science.org/doi/10.1126/science.274.5294.1926

Statistical learning in action

Infant Learning:

Input stream:

bidakupadotigolabu...

Learn high-probability

sequences:

bi-da-ku (word)

pa-do-ti (word)

BPE Learning:

Input corpus:

low low lower...

Merge high-frequency pairs:

l+o → lo

lo+w → low

Build vocabulary:

Hands-on exercise

Experiment with different tokenizers!

1. Choose 3 models: GPT-2, BERT, T5

2. Test on diverse texts:

Standard English: "The cat sat on the mat"

Complex words: "antidisestablishmentarianism"

Contractions: "I'm, you're, won't"

Typos: "teh qiuck brown fox"

Emoji: "I love this!"

Other languages: "这是中文" (Chinese)

3. Compare results: Number of tokens, how words are split, handling of unknown/rare words

4. Reflect: Which tokenizer works best for your use case? What are the trade-offs?

Try it out!

Use the Tokenization Explorer Demo to compare tokenizers interactively!

https://contextlab.github.io/llm-course/demos/tokenization/

Discussion questions

Think about it...

1. Linguistics vs. Statistics: BPE discovers morphemes (un-, -ing, -ness) without
linguistic rules. Is this "learning" morphology, or just pattern matching?

2. Cross-lingual tokenization: Should we use the same tokenizer for all languages?
What are the trade-offs?

3. Semantic preservation: Does breaking "unhappy" into ["un", "happy"] preserve
meaning? What about "butterfly"?

4. Human vs. machine: Humans don't consciously tokenize words. Why do machines
need to?

5. Future directions: Will we move toward character-level or byte-level models that
don't need tokenization?

Primary references

Foundational papers

Sennrich, Haddow, & Birch (2016). Neural Machine Translation of Rare Words

with Subword Units. ACL. — Introduced BPE for NLP

Kudo & Richardson (2018). SentencePiece: A simple and language
independent approach. EMNLP. — Language-agnostic tokenization

Wu et al. (2016). Google's Neural Machine Translation System. arXiv. —
WordPiece algorithm

HuggingFace resources

Chapter 2.4: Tokenizers

Chapter 6: Tokenizers (detailed)

https://aclanthology.org/P16-1162/
https://aclanthology.org/P16-1162/
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/
https://arxiv.org/abs/1609.08144
https://huggingface.co/learn/nlp-course/chapter2/4
https://huggingface.co/learn/nlp-course/chapter6

Key takeaways

Summary

1. Tokenization is fundamental: Bridges raw text and neural networks

2. Word-level has major limitations: OOV problem, vocabulary explosion,
language-dependent

3. Subword tokenization is the sweet spot: Balanced vocabulary size and
sequence length

4. Different methods, similar principles: BPE: frequency-based | WordPiece:
likelihood | SentencePiece: language-agnostic

5. Statistical learning connects humans and machines: Both discover structure

from distributional patterns

6. Always match tokenizer to model! Critical for correct predictions

Looking ahead

Next lecture: X-Hour Text Classification Workshop

How tokenization connects:

POS tagging: Token-level classification

Sentiment: Sequence-level classification

Both depend on good tokenization!

Prepare by...

Experimenting with HuggingFace tokenizers

Thinking about: How does token granularity affect downstream tasks?

Exploring: Tokenizer artifacts and their impact

Questions? Want to chat more?

📧
Email me

💬
Join our Discord

💁
Come to office hours

Next up

Lecture 7 — X-Hour: Text Classification Workshop

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

