
Lecture 5: Data Cleaning &

Preprocessing
PSYC 51.07: Models of language and communication

Jeremy R. Manning

Dartmouth College

Winter 2026

Learning objectives

By the end of this lecture, you will be able to...

1. Understand why data cleaning is critical for NLP tasks

2. Apply common preprocessing techniques to raw text

3. Use web scraping to collect text data

4. Implement lemmatization and stemming

5. Make informed decisions about preprocessing strategies

Key theme

Garbage in, garbage out!

Real-world text is messy

Common problems:

HTML/XML tags: <p>text</p>

Special characters: &

Inconsistent formatting

Extra whitespace

Mixed encodings (UTF-8, ASCII...)

Emoji and Unicode characters

Consequences of dirty data:

Models learn noise, not signal

Reduced accuracy and consistency

Poor generalization to new data

Wasted computation on junk

Unpredictable model behavior

Difficulty debugging issues

Remember

"Quality of input = quality of output"

The data cleaning pipeline

Raw Text Remove Tags Normalize Tokenize Lemmatize Clean Text

A typical data cleaning pipeline

Important

Pipeline varies by task! Not all steps are always needed.

Cleaning messy text step by step

Raw input:

1 <p>I LOVE this!!!

2 https://ex.com

3 a@b.com</p>

Steps:

1. Remove HTML tags

2. Remove URLs/emails

3. Normalize whitespace

1 import re

2 raw = "<p>I LOVE this!!!
https://ex.com a@b.com</p>"

3

4 text = re.sub(r'<.*?>', '', raw)
Step 1

5 text = re.sub(r'http\S+', '',

text) # Step 2

6 text = re.sub(r'\S+@\S+', '',

text)

7 text = ' '.join(text.split())

Step 3

8

9 print(text) # "I LOVE this!!!"

Worked example: Complete pipeline
Full transformation:

Stage Text

Raw <p>I LOVE this product!!! https://ex.com</p>

Remove HTML I LOVE this product!!! https://ex.com

Remove URLs I LOVE this product!!!

Normalize spaces I LOVE this product!!!

Lowercase i love this product!!!

Remove extra punctuation i love this product!

Key decision points:

Keep emoji ? Yes for sentiment analysis (conveys emotion)

Keep punctuation !!!? Maybe (emphasis, but noisy)

Lowercase? Depends on task (lose "LOVE" emphasis)

Different tasks need different preprocessing
Task Keep Remove

Sentiment analysis Emoji, punctuation (style matters) Extra whitespace, special chars

Named entity recognition Case (proper nouns important) Extra whitespace

Topic modeling Content words only Punctuation, case (lowercase all)

Key principle

Preserve information relevant to your task!

The web is a massive source of text data

What you can collect:

News articles and blog posts

Product reviews and ratings

Social media and forum discussions

Domain-specific technical content

Popular tools:

Beautiful Soup: Parse HTML/XML

Requests: Fetch web pages

Scrapy: Full scraping framework

Selenium: JavaScript-heavy sites

Be ethical

Check robots.txt , respect rate limits, and honor terms of service and copyright.

Web scraping with Beautiful Soup

Basic example:

1 from bs4 import BeautifulSoup

2 import requests

3

4 # Fetch webpage

5 url = "https://example.com/article"

6 response = requests.get(url)

7 html_content = response.content

8

9 # Parse HTML

10 soup = BeautifulSoup(html_content, 'html.parser')

11

12 # Extract text from specific elements

13 title = soup.find('h1').get_text()

14 article = soup.find('article').get_text()

15 clean_text = ' '.join(article.split()) # Remove extra whitespace

16 print(f"Title: {title}\nArticle: {clean_text[:200]}...")

Advanced Beautiful Soup techniques

1 from bs4 import BeautifulSoup

2

3 html = """<div class="article">
4 <h2>Breaking News</h2>

5 <p class="content">First paragraph.</p>

6 <p class="content">Second paragraph.</p>

7 <div class="ads">Advertisement</div>

8 </div>"""

9

10 soup = BeautifulSoup(html, 'html.parser')

11

12 paragraphs = soup.find_all('p', class_='content') # Find content paragraphs

13 text = ' '.join([p.get_text() for p in paragraphs])

14

15 for ad in soup.find_all('div', class_='ads'): # Remove unwanted

Always use UTF-8 encoding

Common encoding issues:

UTF-8 vs. ASCII vs. Latin-1

Special characters: é, ñ, ü

Emoji require Unicode

support

Mixed encodings in scraped

data

Best practices:

Default to UTF-8 for all files

Detect unknown:

chardet library

Normalize Unicode: NFKC

form

Fix broken text: ftfy

library

Web scraping often produces mixed encodings

1 import chardet

2

3 raw_bytes = b'Caf\xe9 au lait \x96 delicious!' # Unknown encoding

4

5 result = chardet.detect(raw_bytes) # Detect encoding

6 print(f"Detected: {result}") # {'encoding': 'Windows-1252', 'confidence':
0.73}

7

8 text = raw_bytes.decode(result['encoding']) # Decode with detected
encoding

9 print(text) # "Café au lait – delicious!"

10

11 import ftfy # Alternative: fix broken
Unicode
b k fÃ i d i iPro tip: Save all files as UTF-8 to avoid these headaches!

Five common preprocessing steps

1. HTML/XML tag removal

<p>Hello</p> → Hello

2. Whitespace normalization

"Hello world\n" →

"Hello world"

3. Punctuation handling

Keep for sentiment ("Great!" vs "Great")

Remove for topic modeling

4. Case normalization

Lowercase: "Apple" = "apple"

Preserve for NER: "Apple Inc."

5. Special character removal

URLs, emails, numbers

Task-dependent decisions

Preprocessing example

1 import re

2

3 def preprocess_text(text):

4 text = re.sub(r'http\S+|www.\S+', '', text) # Remove URLs

5 text = re.sub(r'\S+@\S+', '', text) # Remove emails

6 text = re.sub(r'<.*?>', '', text) # Remove HTML tags

7 text = ' '.join(text.split()) # Remove extra whitespace

8 text = text.lower() # Lowercase

9 return text

10

11 raw = "Check out https://example.com! Amazing deals!!"
12 print(preprocess_text(raw)) # "check out amazing deals!!"

Stemming is fast but crude; lemmatization is accurate

Stemming

Rule-based crude chopping

Fast and simple

May produce non-words

Porter Stemmer (1980)

"running" → "run"

Lemmatization

Uses vocabulary + morphology

Slower but more accurate

Always produces real words

Requires POS context

"better" → "good"

When to use which?

Stemming: Speed matters, approximate matching OK

Lemmatization: Need interpretable, real words

Lemmatization produces real words; stemming

produces fragments
Word Porter Stemmer Lemmatizer Notes

ran ran run
Lemma recognizes irregular

verb

runs run run Both work well

running run run Both work well

runner runner runner
Both keep as-is (different

word)

better better good
Lemma handles irregular

adjective

best best good Lemma handles superlative

geese gees goose Stemmer produces non-word!

studies studi study Stemmer produces non-word!

continued...

Lemmatization produces real words; stemming

produces fragments
Word Porter Stemmer Lemmatizer Notes

organizing organ organize Stemmer too aggressive!

...continued

Key insight: Lemmatization produces real words;

stemming can produce fragments.

Stemming can over-stem or under-stem

1 from nltk.stem import PorterStemmer

2 stemmer = PorterStemmer()

3

4 # Over-stemming: Different words become the same

5 words = ['universe', 'university', 'universal']

6 stems = [stemmer.stem(w) for w in words]

7 print(stems) # ['univers', 'univers', 'univers']

8 # All three map to the same stem - meaning is lost!

9

10 # Under-stemming: Same root stays different

11 words2 = ['absorb' 'absorption']

Takeaway: Use lemmatization when you need

interpretable, meaningful tokens.

Stemming with NLTK

1 from nltk.stem import PorterStemmer, SnowballStemmer

2 porter = PorterStemmer()

3 snowball = SnowballStemmer('english')

4

5 words = ['running', 'runs', 'runner', 'ran', 'easily', 'fairly']

6

7 print("Word Porter Snowball")
8 for word in words:

9 print(f"{word:12} {porter.stem(word):12} {snowball.stem(word)}")

10

11 # Output:

12 # running run run

13 # runs run run

14 # runner runner runner

15 # ran ran ran

Lemmatization with spaCy

1 import spacy

2 nlp = spacy.load("en_core_web_sm")

3

4 text = "The cats are running faster than dogs ran yesterday"
5 doc = nlp(text)

6

7 print(f"{'Word':<12} {'Lemma':<12} {'POS'}")

8 print("-" * 36)

9 for token in doc:

10 print(f"{token.text:<12} {token.lemma_:<12} {token.pos_}")

11

12 # Output:

13 # Word Lemma POS

14 # cats cat NOUN

15 # running run VERB

spaCy vs. NLTK for lemmatization

Feature spaCy NLTK

Accuracy High Good

Setup Easy
Requires data

download

POS tagging Built-in Separate step

Dependencies Included Manual WordNet

Use case Production
Research/Teachin

Stop words: common words with little semantic value

When to remove:

Topic modeling

Text classification

Search engines

Information retrieval

When to keep:

Sentiment ("not good" ≠ "good")

Machine translation

Text generation

Neural models (they learn!)

Examples

"the", "a", "is", "in", "and", "or" — language-specific lists available in NLTK and spaCy.

Stop words in practice

1 from nltk.corpus import stopwords

2 import spacy

3

4 stop_words_nltk = set(stopwords.words('english')) # NLTK approach

5 text = "This is an example showing stop word removal"

6 filtered_nltk = [w for w in text.lower().split() if w not in

stop_words_nltk]

7 print("NLTK:", filtered_nltk) # ['example', 'showing', 'stop', 'word',
'removal']

8

9 nlp = spacy.load("en_core_web_sm") # spaCy approach

10 doc = nlp(text)

11 filtered_spacy = [token.text for token in doc if not token.is_stop]

12 print("spaCy:", filtered_spacy) # ['example', 'showing', 'stop',
' d' ' l']

Sentiment analysis requires preserving emotional

signals

Amazon review

"I LOVE this product!!! Best purchase ever! See details at http://example.com"

Keep:

Punctuation (! conveys

emphasis)

Capitalization (LOVE =

strong)

Emoji if present

Remove:

URLs (no sentiment value)

HTML tags

Extra punctuation (!!! → !)

http://example.com/

Discussion: Preprocessing trade-offs

Questions to consider

1. Information loss: What do we lose when we lowercase everything?
Think: "US" (United States) vs. "us" (pronoun)

2. Task dependency: Why does preprocessing differ by task?
Hint: What signals matter for sentiment vs. topic modeling?

3. Modern models: Do transformer models still need heavy preprocessing?
Consider: BERT handles subwords, capitalization, punctuation...

4. Bias introduction: Can preprocessing introduce bias?
Example: Removing slang might remove cultural markers

Practical tips for data cleaning

Best practices

1. Inspect your data first! — Look at samples before deciding on preprocessing

2. Keep raw data separate — Never overwrite originals; you might need them!

3. Document your pipeline — Track what preprocessing you applied and why

4. Experiment! — Try different approaches, measure impact on task

5. Validate incrementally — Check results after each preprocessing step

6. Consider automation — Use libraries: spaCy, NLTK, HuggingFace tokenizers

Complete preprocessing pipeline example

1 import spacy, re

2

3 class TextPreprocessor:

4 def __init__(self, remove_stopwords=False):

5 self.nlp = spacy.load("en_core_web_sm")

6 self.remove_stopwords = remove_stopwords

7

8 def clean(self, text):

9 text = re.sub(r'http\S+', '', text) # Remove URLs

10 text = re.sub(r'<.*?>', '', text) # Remove HTML

11 text = ' '.join(text.split()) # Normalize whitespace

12 doc = self.nlp(text)

13 tokens = [t.lemma_ for t in doc if not (self.remove_stopwords and

t.is_stop)]

14 return ' '.join(tokens)

Preprocessing checklist

Before starting your project, ask...

What is my task? (classification, generation, extraction...)☐
What signals are important? (sentiment, topics, entities...)☐
Should I lowercase? (preserve case for names?)☐
How to handle punctuation? (keep for emotion?)☐
Do I need lemmatization? (or will model handle it?)☐
Should I remove stop words? (or keep for grammar?)☐
How to handle special characters? (emoji, numbers, symbols)☐
What about rare/unknown words? (keep, remove, replace?)☐
Have I validated on sample data? (inspect before/after!)☐

Remember

There's no one-size-fits-all solution!

Tools and libraries

Web Scraping:

Beautiful Soup

Scrapy

Text Processing:

spaCy

NLTK

TextBlob

Encoding:

chardet: Character encoding detection

ftfy: Fixes broken Unicode

HuggingFace Resources:

Chapter 3.2: Processing Data

Chapter 2.4: Tokenizers

https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org/
https://spacy.io/
https://www.nltk.org/
https://textblob.readthedocs.io/
https://huggingface.co/learn/nlp-course/chapter3/2
https://huggingface.co/learn/nlp-course/chapter2/4

Primary references

Classic papers

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137. — The original Porter

Stemmer algorithm

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. Cambridge

University Press. — Chapter 2: Text preprocessing fundamentals

Modern resources:

spaCy documentation: Industrial-strength

NLP

HuggingFace NLP Course: Modern

preprocessing with transformers

Ethical considerations:

Liang et al. (2020). "Towards Debiasing

Sentence Representations"

Consider how preprocessing choices affect

fairness

Hands-on exercise

Try this yourself

1. Choose a website (news, blog, Reddit...)

2. Scrape 10-20 articles/posts

3. Apply different preprocessing pipelines:
Minimal: Just remove HTML

Moderate: + normalize whitespace, lowercase

Heavy: + lemmatize, remove stop words

4. Compare the results:
How does vocabulary size change?

What information is lost/preserved?

Which would work best for sentiment analysis? Topic modeling?

Bonus

Share interesting findings with classmates!

Key takeaways

1. Preprocessing is crucial but task-dependent — No universal

pipeline; adapt to your needs!

2. Balance cleaning vs. information loss — More preprocessing

does not always mean better

3. Stemming vs. Lemmatization — Stemming: fast, approximate;

Lemmatization: slow, accurate

4. Modern models are robust — Transformers can handle messy

text better than older models

5. Always validate — Inspect data before and after preprocessing

Coming up

Tokenization deep dive!

Questions? Want to chat more?

📧
Email me

💬
Join our Discord

💁
Come to office hours

Next up

Lecture 6 — Tokenization deep dive!

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

