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Learning objectives

By the end of this lecture, you will be able to...

1. Understand why data cleaning is critical for NLP tasks
2. Apply common preprocessing techniques to raw text
3. Use web scraping to collect text data

4. Implement lemmatization and stemming

5. Make informed decisions about preprocessing strategies

Key theme
Garbage in, garbage out!



Real-world text is messy

Common problems: Consequences of dirty data:

HTML/XML tags: <p>text</p> Models learn noise, not signal

Special characters: &nbsp; &amp;

Reduced accuracy and consistency

Inconsistent formatting Poor generalization to new data

Extra whitespace Wasted computation on junk

Mixed encodings (UTF-8, ASCII...)

Emoji and Unicode characters

Unpredictable model behavior

Difficulty debugging issues

Remember

"Quality of input = quality of output”



The data cleaning pipeline

[ Raw Text } —> [ Remove Tags J —> [ Normalize ] —— Tokenize —> [ Lemmatize

A typical data cleaning pipeline

Important

Pipeline varies by task! Not all steps are always needed.




Cleaning messy text step by step

Raw input:

<p>I LOVE this!!!
https://ex.com
aab.com</p>

Steps:
1. Remove HTML tags

2. Remove URLs/emails

3. Normalize whitespace

import re
raw = "<p>I LOVE this!!!
https://ex.com a@b.com</p>"

text = re.sub(r'<.*?>', '', raw)
¥ Step 1
text = re.sub(r'http\S+', '"',

text) # Step 2

text = re.sub(r'\S+a\s+', '',
text)

text = ' '.join(text.split())
# Step 3

print(text) # "I LOVE this!!!"



Worked example: Complete pipeline

Full transformation:

Stage Text
Raw <p>I LOVE this product!!! https://ex.com</p>
Remove HTML I LOVE this product!!! https://ex.com
Remove URLs I LOVE this product!!!
Normalize spaces I LOVE this product!!!
Lowercase i love this product!!!
Remove extra punctuation i love this product!

Key decision points:

» Keep emoji ? Yes for sentiment analysis (conveys emotion)
 Keep punctuation !11? Maybe (emphasis, but noisy)

 Lowercase? Depends on task (lose "LOVE" emphasis)




Different tasks need different preprocessing

Task Keep Remove
Sentiment analysis Emoji, punctuation (style matters) Extra whitespace, special chars
Named entity recognition Case (proper nouns important) Extra whitespace
Topic modeling Content words only Punctuation, case (lowercase all)
Key principle

Preserve information relevant to your task!




The web is a massive source of text data

What you can collect: Popular tools:
News articles and blog posts  Beautiful Soup: Parse HTML/XML
Product reviews and ratings « Requests: Fetch web pages
Social media and forum discussions e Scrapy: Full scraping framework
Domain-specitic technical content » Selenium: JavaScript-heavy sites
Be ethical

Check robots.txt , respect rate limits, and honor terms of service and copyright.



Web scraping with Beautiful Soup

Basic example:

from bs4 import BeautifulSoup
import requests

# Fetch webpage

url = "https://example.com/article"
response = requests.get(url)
html_content = response.content

# Parse HTML
soup = BeautifulSoup(html_content, 'html.parser')

# Extract text from specific elements
title = soup.find('h1').get text()
article = soup.find('article').get_text()

clean_text = '.join(article.split()) # Remove extra whitespace
print(f"Title: {title}\nArticle: {clean_text[:200]}...")



Advanced Beautiful Soup techniques

from bs4 import BeautifulSoup

html = """<div class="article">
<h2>Breaking News</h2>

<p class="content">First paragraph.</p>
<p class="content">Second paragraph.</p>
<div class="ads">Advertisement</div>
</div>"""

soup = BeautifulSoup(html, 'html.parser')

paragraphs = soup.find_all('p', class_='content') # Find content paragraphs
text = ' '.join([p.get_text() for p in paragraphs])

for ad in soup.find _all('div', class_='ads'): # Remove unwanted



Always use UTF-8 encoding

Common encoding issues: Best practices:
« UTF-8 vs. ASCI| vs. Latin-1 o Default to UTF-8 for all files
» Special characters: ¢, i, U « Detect unknown:
« Emoji require Unicode chardet library
support « Normalize Unicode: NFKC
» Mixed encodings in scraped form
data

« Fix broken text: ftfy
library



Web scraping often produces mixed encodings

import chardet
raw_bytes = b'Caf\xe9 au lait \x96 delicious!' # Unknown encoding
result = chardet.detect(raw_bytes) # Detect encoding

print(f"Detected: {result}") # {'encoding': 'Windows-1252', 'confidence':
0.73}

text = raw_bytes.decode(result['encoding']) # Decode with detected
encoding

print(text) # "Café au lait — delicious!"

import ftfy # Alternative: fix broken
Unicode

Pro~tip: Save all files as UTF-8 to avoid these headaches!



Five common preprocessing steps

1. HTML/XML tag removal 4. Case normalization

. <p>Hello</p> — Hello - Lowercase: "Apple" = "apple"

» Preserve for NER: "Apple Inc."
2. Whitespace normalization

5. Special character removal
« "Hello world\n" —

||He110 WOI‘-Ld" -4 URI_S, emaI|S, numbers

» Task-dependent decisions

3. Punctuation handling

« Keep for sentiment ("Great!" vs "Great")

« Remove for topic modeling



Preprocessing example

import re

def preprocess_text(text):

text = re.sub(r'http\S+|ww.\S+', '', text) # Remove URLs

text = re.sub(r'\S+a\S+', '', text) # Remove emails

text = re.sub(r'<.x?>', '', text) # Remove HTML tags

text = ' '.join(text.split()) # Remove extra whitespace
text = text.lower() # Lowercase

return text

raw = "Check out https://example.com! <b>Amazing</b> deals!!"
print(preprocess_text(raw)) # "check out amazing deals!!"



Stemming is fast but crude; lemmatization is accurate

Stemming Lemmatization

Rule-based crude chopping Uses vocabulary + morphology

Slower but more accurate

Fast and simple

May produce non-words

Porter Stemmer (1280)

Always produces real words

Requires POS context

“running” = "run" e "better" = "good"

When to use which?
« Stemming: Speed matters, approximate matching OK
- Lemmatization: Need interpretable, real words



Lemmatization produces real words; stemming
produces fragments

Word Porter Stemmer Lemmatizer Notes
Lemma recognizes irregular
ran ran run
verb
runs run run Both work well
running run run Both work well

Both keep as-is (different
runner runner runner

word)
Aettar bkt Jo0d Lernmé handles irregular
adjective
best best good Lemma handles superlative
geese gees goose Stemmer produces non-word!
studies studi study Stemmer produces non-word!

continued...



Lemmatization produces real words; stemming
produces fragments

Word Porter Stemmer Lemmatizer Notes

organizing organ organize Stemmer too aggressive!

Key insight: Lemmatization produces real words;
stemming can produce fragments.

...continued



Stemming can over-stem or under-stem

from nltk.stem import PorterStemmer
stemmer = PorterStemmer()

# Over-stemming: Different words become the same
words = ['universe', 'university', ‘'universal']
stems = [stemmer.stem(w) for w in words]
print(stems) # ['univers', 'univers', 'univers']

# ALl three map to the same stem - meaning 1s lost!

# Under-stemming: Same root stays different

wnrde? = [ "ahcnrh' 'ahenrntinn'l

Takeaway: Use lemmatization when you need
interpretable, meaningful tokens.



Stemming with NLTK

from nltk.stem import PorterStemmer, SnowballStemmer
porter = PorterStemmer()
snowball = SnowballStemmer('english')

words = ['running', 'runs', 'runner', 'ran', 'easily', 'fairly']

print("Word Porter Snowball")
for word in words:
print(f"{word:12} {porter.stem(word):12} {snowball.stem(word)}")

# Output:

# running run run

¥ runs run run

# runner runner runner
# ran ran ran



Lemmatization with spaCy

import spacy
nlp = spacy.load("en_core_web_sm")

text = "The cats are running faster than dogs ran yesterday"
doc = nlp(text)

print(f"{'Word':<12} {'Lemma':<12} {'POS'}")
print("-" * 36)
for token 1in doc:
print(f"{token.text:<12} {token.lemma_:<12} {token.pos_}")

# Output:
# Word Lemma POS
# cats cat NOUN

# running run VERB



spaCy vs. NLTK for lemmatization

Feature spaCy NLTK
Accuracy High Good
Requires data
i Fa%Y download
POS tagging Built-in Separate step
Dependencies Includeo Manual WordNet
lJse case Production Research/Teachin




Stop words: common words with little semantic value

When to remove: When to keep:
« Topic modeling « Sentiment ("not good" # "good")
« Text classification « Machine translation
» Search engines « Text generation
e Information retrieval « Neural models (they learn!)
Examples

"the", "a", "is", "in", "and", "or" — language-specific lists available in NLTK and spaCly.



Stop words in practice

from nltk.corpus import stopwords
import spacy

stop_words_nltk = set(stopwords.words('english')) # NLTK approach
text = "This 1s an example showing stop word removal"

filtered_nltk = [w for w in text.lower().split() if w not in
stop_words_nltk]

print("NLTK:", filtered nltk) # ['example', 'showing', 'stop', 'word',
'removal ']

nlp = spacy.load("en_core_web_sm") # spaCy approach

doc = nlp(text)

filtered_spacy [token.text for token in doc if not token.is_stop]
print("spaCy:", filtered spacy) # ['example', 'showing', 'stop',



Sentiment analysis requires preserving emotional

Amazon review

signals

"I LOVE this product!!! Best purchase ever! See details at http://example.com "

Keep:

 Punctuation (! conveys
emphasis)

. Capitalization (LOVE =

strong)

e Fmoii if oresent

\/

Remove:

RLs (no sentiment value)

HTML tags

o Extra punctuation (!l = 1)


http://example.com/

Discussion: Preprocessing trade-offs

Questions to consider
1. Information loss: What do we lose when we lowercase everything?
o Think: "US" (United States) vs. "us" (pronoun)

2. Task dependency: Why does preprocessing differ by task?

o Hint: What signals matter for sentiment vs. topic modeling?

3. Modern models: Do transformer models still need heavy preprocessing?

o Consider: BERT handles subwords, capitalization, punctuation...

4. Bias introduction: Can preprocessing introduce bias?

o Example: Removing slang might remove cultural markers



Practical tips for data cleaning

Best practices

1. Inspect your data first! — Look at samples before deciding on preprocessing
2. Keep raw data separate — Never overwrite originals; you might need them!
3. Document your pipeline — Track what preprocessing you applied and why
4. Experiment! — Try different approaches, measure impact on task

5. Validate incrementally — Check results after each preprocessing step

6. Consider automation — Use libraries: spaCy, NLTK, HuggingFace tokenizers



Complete preprocessing pipeline example

import spacy, re

class TextPreprocessor:
def init_(self, remove_stopwords=False):
self.nlp = spacy.load("en_core_web_sm")
self.remove_stopwords = remove_stopwords

def clean(self, text):
text = re.sub(r'http\S+', '', text) # Remove URLSs
text = re.sub(r'<.x?>', '', text) # Remove HTML
text = ' '.join(text.split()) # Normalize whitespace
doc = self.nlp(text)
tokens = [t.lemma_ for t in doc if not (self.remove_stopwords and

t.is_stop)]
return

'.join(tokens)



Preprocessing checklist

Before starting your project, ask...

00 What is my task? (classification, generation, extraction...)
What signals are important? (sentiment, topics, entities...)
Should | lowercase? (preserve case for names?)

How to handle punctuation? (keep for emotion?)

Do | need lemmatization? (or will model handle it?)

Should | remove stop words? (or keep for grammar?)

How to handle special characters? (emoji, numbers, symbols)
What about rare/unknown words? (keep, remove, replace?)

O 0O 0000 6oOd

Have | validated on sample data? (inspect before/after!)

Remember

There's no one-size-fits-all solution!



Tools and libraries

Web Scraping: Encoding:
« Beautiful Soup « chardet: Character encoding detection
e Scrapy. o ftfy: Fixes broken Unicode
Text Processing: HuggingFace Resources:
« spaCy « Chapter 3.2: Processing_Data
o NLTK  Chapter 2.4: Tokenizers

o TextBlob



https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org/
https://spacy.io/
https://www.nltk.org/
https://textblob.readthedocs.io/
https://huggingface.co/learn/nlp-course/chapter3/2
https://huggingface.co/learn/nlp-course/chapter2/4

Primary references

Classic papers

« Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137. — The original Porter
Stemmer algorithm

« Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. Cambridge
University Press. — Chapter 2: Text preprocessing fundamentals

Modern resources: Ethical considerations:

 spaCy documentation: Industrial-strength o Liang et al. (2020). "Towards Debiasing
NLP

« HuggingFace NLP Course: Modern  Consider how preprocessing choices affect
preprocessing with transformers fairness

Sentence Representations”



Hands-on exercise

Try this yourself
1. Choose a website (news, blog, Reddit...)

2. Scrape 10-20 articles/posts
3. Apply different preprocessing pipelines:

o Minimal: Just remove HTML
o Moderate: + normalize whitespace, lowercase
o Heavy: + lemmatize, remove stop words

4. Compare the results:

o How does vocabulary size change?

o What information is lost/preserved?
o Which would work best for sentiment analysis? Topic modeling?

Bonus

Share interesting findings with classmates!



Key takeaways

1. Preprocessing is crucial but task-dependent — No universal
pipeline; adapt to your needs!

2. Balance cleaning vs. information loss — More preprocessing
does not always mean better

3. Stemming vs. Lemmatization — Stemming: fast, approximate;
Lemmatization: slow, accurate

4. Modern models are robust — Transformers can handle messy
text better than older models

5. Always validate — Inspect data before and after preprocessing

Coming up
Tokenization deep divel!



Questions? Want to chat more?

Email me Join our Discord Come to office hours

Next up
Lecture 6 — Tokenization deep dive!


mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

