Dartmouth Co
Winter 2026

Assignment 1: Q & A

Questions welcome
Let's take some time to address any questions about Assignment 1:
 Implementation challenges
 Pattern matching strategies
« Configuration file format
« Testing approaches

Remember

There are no bad questions. If you're confused about something, others probably
are too!

Common issues and tips

Technical tips
« You can use raw strings for regular expressions: r"pattern"

o Test patterns on regex101.com or https://colab.research.google.com/

 Handle edge cases (empty input, special chars)

« Print intermediate results for debugging

Common pitfalls

« Testing on only a few inputs and missing edge cases

Missing "special cases" like memory or goto statements

Handling whitespace and/or punctuation inconsistently

Matching keywords in the wrong order (instead of in descending order of rank)

Greedy vs. non-greedy pattern matching

https://regex101.com/
file:///Users/jmanning/llm-course/slides/week1/Colaboratory

Beyond ELIZA...

A foundation for more

ELIZA (1966) was just the beginning! Weizenbaum's ideas inspired other researchers
to test the limits of what rules-based systems could do.

Today we'll explore...

« PARRY (1972): a different kind of simulation

« A.LI.C.E. (1995): pattern matching at scale

« Formal grammars: theoretical foundations of pattern matching
« Fundamental limits of rules-based approaches

PARRY (1972)

Further reading

Colby, Weber, & Hilf (1971,_Artificial Intelligence): Artitficial Paranoia

o Created by psychiatrist Kenneth Colby at Stanford
o Simulated a patient with paranoid schizophrenia
o Different goal than ELIZA: model a specific mental iliness

« Had internal state: beliefs, emotional level, goals

Key insight
ELIZA reflects; PARRY models. ELIZA avoids commitment; PARRY has a coherent (if
paranoid) worldview.

https://courses.cs.umbc.edu/graduate/671/fall20/resources/colby_71.pdf
https://courses.cs.umbc.edu/graduate/671/fall20/resources/colby_71.pdf
https://courses.cs.umbc.edu/graduate/671/fall20/resources/colby_71.pdf

ELIZA versus PARRY

ELIZA (1966) PARRY (1972)

Intended to simulate "beliefs" about the world

Non-directive therapy

Tracks emotional "state" across three
dimensions: anger, fear, and mistrust

Reflects user input back

No internal state or beliefs

Avoids making claims Uses internal state to select responses

Goal: keep user talking Makes paranoid claims

Goal: behave like a paranoid schizophrenic
patient

Historical note

In 1973, Vint Cerf (one of the "fathers of the Internet") used ARPANET (the precursor to the Internet) to connect ELIZA
and PARRY in a text-based conversation! You can read the transcript here.

https://datatracker.ietf.org/doc/html/rfc439

The PARRY algorithm

User input] — [Pattern match J —= [Update emotions J —_— Select response —= [Output]

PARRY's processing pipeline with emotional state

Key difference from ELIZA

PARRY maintains a persistent emotional state across turns. This state influences
which responses are selected, creating the illusion of coherent paranoid behavior

over time.

Pattern matching: detect trigger keywords in user input

User input

How does it work?

)=

Pattern match

)=

Update emotions

J=|

Select response

)+ (o)

PARRY first scans the input for trigger keywords organized by topic. Each topic has associated emotional effects and
response pools. This is much simpler than ELIZA's decomposition/reassembly mechanisms!

Example trigger categories

Category Keywords Emotional effect

Mafia/mob "mafia", "mob", "gangster" Fear +4, Mistrust +5
Police "police", "cop", "arrest” Mistrust +4, Anger +3
Trust "trust", "believe", "honest" Mistrust +3

Racetrack "horses", "racing", "track" Anger -1 (calming)

Emotional update: modify internal state

User input] —> [Pattern match] — [Update emotions] — [Select response] — [Output

How does it work?
When a trigger pattern matches, PARRY adjusts its emotional variables. These values persist across the conversation.

class Parry:
def __init_ (self):

self.anger = # 0-20 scale
self.fear = # 0-20 scale
self.mistrust = # 0-15 scale

def process_trigger(self, topic):
if topic = "mafia":
self.fear +=
self.mistrust +=
self.anger +=

Response selection: choose based on emotional state

User input] = [Pattern match] — [Update emotions] —> { Select response] — [Output]

How does it work?

PARRY selects responses from different pools based on current emotional thresholds. Higher emotions trigger more
paranoid responses.

Response pools by emotional state

Emotional level Response style Example
Low (calm) Cooperative "| used to gamble on horses."
Medium Guarded "] don't want to talk about that."
High (paranoid) Hostile "Are you one of THEM?"

Try it out!

Use the Chatbot Evolution Demo to interact with PARRY. The "Rule Breakdown" tab illustrates the internal state changes
and how they affect responses.

https://contextlab.github.io/llm-course/demos/chatbot-evolution/

The Turing Test, revisited

Further reading

Colby, Hilf, Weber, & Kraemer (1972, Artificial Intelligence): Turing-like indistinguishability tests for the
validation of a computer simulation of paranoid processes

PARRY's big test

In 1972, PARRY was tested via teletype against real patients and psychiatrists. Judges could not reliably
distinguish PARRY from actual patients with paranoid schizophrenia.

. This was one of the first informal "Turing tests"
« Success? Or a comment on how we judge understanding?

« Psychiatrists were looking for symptoms, not understanding

Think about it

Does passing a specialized test mean the system understands anything? What does it mean that experts
could be fooled?

https://www.sciencedirect.com/science/article/abs/pii/0004370272900495
https://www.sciencedirect.com/science/article/abs/pii/0004370272900495
https://www.sciencedirect.com/science/article/abs/pii/0004370272900495

A.L.I.C.E. (1995)

Further reading

A.L.I.C.E. (Artificial Linguistic Internet Computer Entity) was created by Richard
Wallace.

 AIML (Artificial Intelligence Markup Language)
« Over 40,000 patterns (vs ELIZA's ~200)

« Won the Loebner Prize three times (2000, 2001, 2004)

« Open source, widely studied and extended

« Very similar to ELIZA, but scaled up to a much larger rule set

« Explores the limits of pattern matching at scale

https://www.alicebot.org/
https://en.wikipedia.org/wiki/Loebner_Prize

The A.L.I.C.E. algorithm

User input] —> [Normalize] —_—> [Pattern search] —> Extract wildcards —_> { Process template] —_—> [Response]

A.L.I.C.E.'s AIML processing pipeline

Key innovation
AIML supports recursive processing via <srai> (Symbolic Reduction Al), allowing

patterns to trigger other patterns. This enables handling many input variations with
fewer rules.

Normalization: prepare input for matching

User input] — [Normalize } — [Pattern search J — [Extract wildcards } — [Process template } —= [Response]

How does it work?

First, A.L.I.C.E. normalizes input to uppercase and removes punctuation before pattern matching. This reduces the
number of patterns needed.

Example normalization

Input Normalized
"Don't you think so?" "DO NOT YOU THINK SO"
"What's your name?" "WHAT IS YOUR NAME"

"| can't believe it!" "I CAN NOT BELIEVE IT"

Pattern search and wildcard extraction:

User input] — [Normalize } — [Pattern search J — [Extract wildcards } —> [Process template } —=> [Response]

How does it work?

A.L.I.C.E. matches inputs to 40,000+ ranked patterns. Patterns use wildcards (*) to capture variable text.

<category>

<pattern>MY NAME IS *</pattern>

<template>Nice to meet you, <star/>.</template>
</category>

<category>

<pattern>I AM FEELING *</pattern>

<template>Why are you feeling <star/>?</template>
</category>

Sound familiar?

This is uses essentially the same decomposition/reassembly approach as ELIZA, just in XML format with more extensive
coverage.

SRAI: recursive pattern matching

User input] —_— [Normalize] — [Pattern search] — [Extract wildcards] — [Process template] —= [Response]

How does it work?
The <srai> tag redirects processing to another pattern. This allows many input variations to map to a single response. It works like
goto statementsin ELIZA.

¢I— These all redirect to the same base pattern —
<category>
<pattern>HI THERE</pattern>
<template><srai>HELLO</srai></template>
</category>

<category>
<pattern>HOWDY</pattern>
<template><srai>HELLO</srai></template>
</category>

<category>

<pattern>HELLO</pattern>

<template>Hello! How can I help you today?</template>
</category>

Live demo

Try it out!
Use the Chatbot Evolution Demo to interact with A.L.I.C.E.

Explore the rules (and some additional nuances)

« Use the AIML Breakdown tab to see some additional details, like tracking the
current topic, remembering the most recent response, and remembering the
user's name.

« How do PARRY and A.L.I.C.E. differ from ELIZA? How are they similar?
« What do they do well?
« Where do they break down?

https://contextlab.github.io/llm-course/demos/chatbot-evolution/

Formal grammars: theory behind pattern
matching

Further reading

Chomsky (1956, IRE Transactions on Information Theory): Three Models for the
Description of Language

In 1956, Noam Chomsky introduced a hierarchy of
formal grammars that classify languages by the
complexity of rules needed to generate them.

Why does this matter?

The Chomsky hierarchy tells us what kinds of patterns different computational
systems can recognize—and what they cannot.

https://ieeexplore.ieee.org/abstract/document/1056813
https://ieeexplore.ieee.org/abstract/document/1056813
https://ieeexplore.ieee.org/abstract/document/1056813

The Chomsky hierarchy

Type Grammar Recognizer Example

. axb+ (any number of a's
Type 3 Regular Finite automaton
followed by one or more b's)

Palindromes: e.g.,

Type 2 Context-free Pushdown automaton
racecar
Type 1 Context-sensitive Linear-bounded automaton a"p’c"
Any computable language:
Type O Unrestricted Turing machine e.g., is this a valid Python
program?
Key insight

Regular expressions (which ELIZA, PARRY, and A.L.I.C.E. use) are Type 3—the simplest class!

Remain calm...

This isn't a theory of computation course; you don't need to follow all of the details here. The key
takeaways are that (a) there are different levels of complexity in the kinds of patterns languages can have,
and that (b) regular expressions are at the simplest level.

Type 3 grammars

Formal definition
A Type 3 grammar (regular grammar) has production rules of the form:
e S— aA|bB
e A— aB
e B— bA
e A= a
e A= ¢

where A and B are non-terminal symbols, a and b are terminal symbols, and € is the empty string (also a terminal
symbol). A terminal symbol appears in the final output string, whereas a non-terminal symbol is a placeholder that can
be replaced by other symbols according to the production rules. S is a special non-terminal symbol called the start
symbol; it represents the entire string generated by the grammar.

Example Type 3 grammar: generate strings with even number of a's and b's
e S— aA|bB
e A= aS|a
e« B—bS|b

Challenge!
Can you write down a Type 3 grammar that generates your first name, repeated O or more times?

Regular expressions are Type 3 grammars

Mathematical equivalence

Regular expressions and Type 3 (regular) grammars are provably equivalent—they recognize exactly the same class of
languages. In other words, for any regular expression, there exists a Type 3 grammar that generates the same language,

and vice versa.

Example equivalence

Regular Expression

Type 3 Grammar

Description

A->DbA | cA| e

"acbc"

S>A | C
(ab)*c+ A > abA | abC Matches: "c", "cc", "abc", "ababcc"
€C> c | cC
S > aA Matches: "a", "ab", "ac", "abbc",
a(b|c)=

Limitation

Regular languages cannot match nested structures like palindromes or recursive syntax. This (among other reasons) is
why rule-based chatbots struggle with complex language.

Stuftf rule-based systems can't handle

« Novel situations not covered by rules

 Context that spans multiple turns

 Contextually dependent patterns

« Nested or recursive structure

 Conceptual (semantic) similarity (beyond defining equivalent keywords)

« Complex patterns (e.g., detecting whether something is a valid Python
program)

e ...and more!

If rules can't fully capture human language, where
do we go from here?

The harsh reality
Even with 40,000+ hand-crafted patterns, A.L.I.C.E. cannot:

 Handle novel combinations of known concepts
e Maintain context across a conversation

« Understand implicit meaning or subtext

« Generalize beyond its training examples

The key insight

What if, instead of writing rules by hand, we could /earn patterns automatically from
massive amounts of text data?

Up next...

Week 2: Computational linguistics
We're leaving hand-crafted rules behind! Next week we explore how to learn from data:
« Lecture 5: Data cleaning and preprocessing
« Lecture 6: Tokenization—breaking text into meaningful units
o Lecture 7: Text classification
« Lecture 8: POS tagging and sentiment analysis

Hand-crafted rules —> Learning from data

The paradigm shift that enables modern NLP

The key idea
Instead of writing rules, we'll learn to extract patterns from large text corpora automatically.

Key takeaways

1. PARRY adds emotional state: Pattern matching + persistent variables = coherent
personality

2. A.L.I.C.E. scales patterns: 40,000 rules with AIML and recursive SRAI processing
3. Chomsky hierarchy: Regular expressions (Type 3) are the weakest class of
grammars

4. Fundamental limits: Rules capture syntax, not meaning—no amount of patterns
can bridge this gap

Questions? Want to chat more?

Email me Join our Discord Come to office hours

Tip
Start working on Assignment 1 now if you haven't already. Reach out early if you get
stuck.

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
file:///Users/jmanning/llm-course/slides/week1/context-lab.youcanbook.me

