I en
u ic
R. M
Dartmouth Co
Winter 2026

Today's agenda

What we'll cover
1. Algorithm: how ELIZA actually works, broken down step-by-step
2. Demo: playing with a reference implementation to see the algorithm in action
3. Assignment 1: tips and tricks for getting started

Goal
Leave today knowing how to build your own implementation of ELIZA.

The ELIZA algorithm

User input] —_ [Pre-subs] —_ [Pattern match] —_ Decompose —_—> [Reassemble] —_—> [Post-subs] —_ [Response]

The complete ELIZA processing pipeline

Key insight

Each step is simple string manipulation. The illusion of "intelligence" comes from
three things:

o The user's text, which provides structured content
« Hand-crafted patterns and templates that guide the response

« Hard-to-shake human tendencies to anthropomorphize

Under the hood

ELIZA's complete instruction set comprises ~200 simple rules.

https://github.com/ContextLab/eliza-llm-course/blob/main/instructions.txt

Pre-substitutions: normalize input before pattern
matching

User input] —_ [Pre-subs] —_— [Pattern match] —_ [Decompose] —_—> [Reassemble] —_—> [Post-subs] —_ [Response]

What's the point?

Normalizing common variations helps patterns match more reliably, allowing fewer rules to effectively

cover more inputs. This step also handles common misspellings, simplifies phrasing, and helps to set the
right tone in the final response.

Example pre-substitutions
. "dont" -> "don't"
« "cant" -> "can't"
. "recollect" -> "remember"
. "how" -> "what"

« "machine" -> "computer"

Pattern matching: detect keywords, synonyms,
and patterns in the input

What's the point?

We need to identify which rule to apply based on the user's input. ELIZA uses basic
regular expressions to define patterns that can capture important keywords and
structure in the input text.

Types of patterns
« Keywords: look for specific words (e.g., "mother”, "father")
« Synonyms: equate different words with similar meanings
 Sequences: identify when words appear in a certain order

Pattern matching: detect keywords, synonyms,
and patterns in the input

How does it work?

ELIZA uses a ranked list of keywords to check for. Each keyword is associated with
one or more patterns based on regular expressions.

Example keywords and ranks
« computer (rank 50)
e dreamed (rank 4)

« everyone (rank 2)

« xnone (rank 0): fallback when no other patterns match

Pattern matching: detect keywords, synonymes,
and patterns in the input

How does it work?

Some keywords have synonyms— alternative words with similar meanings. ELIZA
treats these as equivalent when matching patterns.

Example synonyms
o belief feel think believe wish
« family mother mom father dad sister brother wife children child
« desire want need
» sad unhappy depressed sick
 happy elated glad better

Pattern matching: detect keywords, synonyms, and
patterns in the input

[User input] — [Pre-subs] —> [Pattern match] —> [Decompose] — [Reassemble] —> [Post-subs] = [Response]

How does it work?

Patterns are defined using simple regular expressions. They can include specific words or wildcards (*).
Synonyms are denoted by "@".

Example patterns

keyword patterns (selected) matching text
o * am * * | am really excited to build a
chatbot
are *are you *; * are * Why are you asking me that?
i * i @desire *; * i am * @happy *; ... | am so glad to hear that!
e . Yes, | guess that's true but | never
4 really thought about it before.

Pattern matching: memory

How does it work?

When patterns start with "$", ELIZA saves the matched input to a buffer for later

use. When the xnone keyword is triggered, ELIZA can pull from this buffer to
generate a response to a previous iInput.

Example patterns

In the original rule set, there is only one memory pattern: $ * my * (e.g., "l have
been thinking a lot about my family"). If no other patterns match later, ELIZA can

respond with "Did you come to me to talk about your family?" (or other * my =
responses) using the saved input.

Pattern matching: rankings

How does it work?

Text is matched against patterns in decreasing order of keyword rank. The first
pattern that matches is selected for further processing.

Example patterns

Since "computer" has a rank of 50, whereas "dreamed" has a rank of 4, the text "I
dreamed about my computer" would be tested against patterns associated with
"computer” first. However, if no patterns for higher-ranked keywords match, ELIZA
continues down the list until a match is found. The "xnone" keyword (rank 0)
provides a fallback pattern (*) when no other patterns match.

Decomposition: extract relevant parts of the input

User input] —> [Pre-subs] —> [Pattern match] — [Decompose] — [Reassemble] —> [Post-subs] — [Response]

How does it work?

Once text is matched to a pattern, ELIZA breaks down the input into capture groups that can be used to

craft a response. Each synonym and wildcard (*) in the pattern corresponds to a capture group. Capture
groups are numbered in order of appearance, starting from 1.

Example decomposition

Pattern Input Captured groups
*jam * @sad "| am feeling unhappy today" L fej:h?tgoolla?.. unhappy”,
*my * @family * "My mother and father are kind" 1:°%,2: "%, 3: "mother”, 4: "and
/ 2 U father are kind"
* "| am worried about my dream" 1: "l am worried about my dream”

Reassembly: generate a response using templates

User input

o)

Pattern match

] — [Decompose] — [Reassemble] —> [

Post-subs

How does it work?

ELIZA's responses "reflect back" parts of the user's input using reassembly templates. The templates define

how to construct a response— often using capture groups from the decomposition step.

Example reassembly

Input

Captured groups

Reassembly template

Result

"| can't trust people”

1. "" 2: "can't", 3: "trust

"Perhaps you could (3)

"Perhaps you could trust

people” now." people now."
"l don't remember why | [1:"", 2: "remember why | "Do you wish to be able E)Orc)a/%uevrr\?;};rt(v)v}?e aobule
said that" | said that" to (2)?" yy

said that?"

"| suppose it wasn't that
long ago”

1: "l suppose it wasn't
that long ago"

"Do you say (1) for some
special reason?"

"Do you say | suppose it
wasn't that long ago for
some special reason?"

] — [Response]

Post-substitutions: reflect first and second person

How does it work?

To ensure the response sounds natural, ELIZA applies post-substitutions to adjust
pronouns and verb forms. This step flips first-person references to second-person
and vice versa. It works similarly to pre-substitutions; it's a simple string replacement
based on a predefined dictionary.

Example post-substitutions
e "am" -> "are”
e "your" -> "my"
e "me" -> "you"

e "myself" ->

I'm" -> "you are”

'yourself"

It's....demo timél

User input } —_ [Pre-subs] —_ [Pattern match] —_ Decompose —_—> [Reassem ble] —_—> [Post-subs] —_ (Response

With this complete pipeline in mind, let's revisit our
ELIZA demo to see how it all fits together. Use the
"Rule Breakdown" tab to trace each step of the
pipeline for different inputs.

Try it out...

Take a look at the complete list of rules, or view them in the "Live Rule Editor" tab
of the demo. Pick out a few patterns and see if you can get ELIZA to pick up on
them. Also try to find some edge cases where the pipeline breaks down! For a

special challenge, try creating your own rules to see if you can "patch up" the edge
cases you find.

https://context-lab.com/llm-course/demos/eliza/
https://github.com/ContextLab/eliza-llm-course/blob/a112d7f6a7004773fc9b20cf181fe2269bd3001c/instructions.txt

How should you approach Assignment 17

Tips and tricks
1. First, make sure you fully understand the ELIZA algorithm we covered today.
Review the slides and/or demo as needed.

2. Use vibe coding to accelerate your development. Some strategies are in the
Assignment 1 instructions.

3. You must carefully test your implementation. Write functions for each step of the
pipeline, and test them one-at-a-time. Then integrate them.

4. Consider edge cases and failure modes as you test. What happens if the user
input is empty? Or very long? Or contains special characters? What if new rules
were added— would your code still work?

5. Chat with your implementation by setting up a simple conversation loop. Make

sure it behaves as expected; look out for strange or nonsensical responses.
Compare to responses generated by the demo implementation.

https://context-lab.com/llm-course/assignments/assignment-1/

Debugging tips

Use print statements

def find match(text, rules):
for rule in rules:
match = re.search(rule["pattern"], text)
if match:
print(f"Matched: {rule['pattern']}")
print(f"Groups: {match.groups()}")
return rule, match
print("No match found!")
return None, None

Print what patterns match and why. Remove prints
when done.

Assignment 1 overview

What you'll build
A complete ELIZA implementation that:

e Reads rules from instructions.txt
« Handles pre/post substitutions

« Matches patterns and generates responses
« Maintains a conversation loop

Due date

Friday, January 16 (end of Week 2)

Key takeaways

1. ELIZA is simple: Just string manipulation and pattern matching
2. Pre/post subs: Normalize input, fix output pronouns

3. Pattern priority: Check specific patterns before general ones
4. Vibe coding: Use Al tools to accelerate development

5. Test incrementally: Build and test piece by piece

Remember

The "magic" isn't in the algorithm. It's in how humans interpret the output!

Questions? Want to chat more?

Email me Join our Discord Come to office hours

Get help

Start Assignment 1 early. Ask questions, talk to each other, and come to office hours
if you get stuck!

mailto:jeremy@dartmouth.edu
https://discord.gg/sftEk9Ygdw
https://context-lab.youcanbook.me/

